DOI QR코드

DOI QR Code

Mechanical model of lateral fracture for the overlying hard rock strata along coal mine goaf

  • Zhao, Shankun (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Sui, Qiru (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Cao, Cong (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Wang, Xuecheng (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Wang, Chunlai (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Zhao, Daming (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Wang, Yin (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Zhao, Yang (Safety Technology Branch, CCTEG China Coal Research Institute)
  • Received : 2021.01.12
  • Accepted : 2021.09.29
  • Published : 2021.10.10

Abstract

Considering the continuous development of gob side entry driving technology, the influence of roof fracture on coal pillar is difficult to be accurately predicted. In order to explore the fracture structure characteristics of the overlying multi thick hard rock strata and its influence on coal pillars, the stress analysis tests of coal pillars under different roof fracture positions were designed. Different fracture positions of immediate roof and high-level thick hard rock were simulated by different corresponding positions of goaf, coal pillar edge line and rotary fixture line. According to four experimental design schemes, the strain distribution of coal mine goaf under different roof fracture combination positions was obtained. By analyzing the results of digital speckle pattern experiment, the distribution range and form of stress above coal pillar and low level thick hard rock are obtained, which provides theoretical basis for studying the whole process of coal pillar fracture.

Keywords

Acknowledgement

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 52074294), the National Key Research and Development Project (Grant No. 2017YFC0804201, 2017YFC0804203).

References

  1. Aliha, M.R.M. and Bahmani, A. (2017), "Rock fracture toughness study under mixed mode I/III loading", Rock Mech. Rock Eng., 50(7), 1-13. http://doi.org/10.1007/s00603-017-1201-7.
  2. Aliha, M.R.M., Hosseinpour, G.R. and Ayatollahi, M.R. (2013), "Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials.", Rock Mech. Rock Eng., 46(5), 1023-1034. http://doi.org/10.1007/s00603-012-0325-z
  3. Bahmani, B., Abedi, R. and Clarke, P.L. (2019), "A stochastic bulk damage model based on Mohr-Coulomb failure criterion for dynamic rock fracture", Appl. Sci., 9(5), 830. http://doi.org/10.3390/app9050830.
  4. Bai, J.B., Shen, W.L., Guo, G.L., Wang, X.Y. and Yu, Y. (2015). "Roof deformation, failure characteristics, and preventive techniques of gob-side entry driving heading adjacent to the advancing working face", Rock Mech. Rock Eng., 48(6), 2447-2458. http://doi.org/10.1007/s00603-015-0713-2.
  5. Batugin, A., Wang, Z., Su, Z. and Sidikovna, S.S. (2021), "Combined support mechanism of rock bolts and anchor cables for adjacent roadways in the external staggered split-level panel layout", Int. J. Coal Sci. Technol., 3, 1-15. http://doi.org/10.1007/s40789-020-00399-w.
  6. Bertuzzi, R., Douglas, K. and Mostyn, G. (2016), "An approach to model the strength of coal pillars", Int. J. Rock Mech. Min. Sci., 100(89), 165-175. http://doi.org/10.1016/j.ijrmms.2016.09.003
  7. Blaber, J., Adair, B. and Antoniou, A. (2015), "Ncorr: Open-source 2D digital image correlation Matlab software", Exp. Mech., 55(6), 1105-1122. http://doi.org/10.1007/s11340-015-0009-1.
  8. Coggan, J., Gao, F., Stead, D. and Elmo, D. (2012), "Numerical modelling of the effects of weak immediate roof lithology on coal mine roadway stability", Int. J. Coal Geol., 90, 100-109. http://doi.org/10.1016/j.coal.2011.11.003.
  9. Das, A.J., Mandal, P.K., Bhattacharjee, R., Tiwari, S., Kushwaha, A. and Roy, L.B. (2017), "Evaluation of stability of underground workings for exploitation of an inclined coal seam by the ubiquitous joint model", Int. J. Rock Mech. Min. Sci., 93, 101-114. http://doi.org/10.1016/j.ijrmms.2017.01.012.
  10. Das, A.J., Mandal, P.K., Paul, P.S. and Sinha, P.K. (2019), "Generalised analytical models for the strength of the inclined as well as the flat coal pillars using rock mass failure criterion", Rock Mech. Rock Eng., 52(10), 3921-3946. http://doi.org/10.1007/s00603-019-01788-7.
  11. Esterhuizen, E., Mark, C., Engineer, P.R., Engineer, M. and Murphy, M.M. (2010), "Numerical model calibration for simulating coal pillars, gob and overburden response", Proceedings of the 29th International Conference on Ground Control in Mining, Morgantown, West Virginia, U.S.A., July.
  12. Esterhuizen, G.S., Dolinar, D.R. and Ellenberger, J.L. (2011), "Pillar strength in underground stone mines in the United States." Int. J. Rock Mech. Min. Sci., 48(1), 42-50. http://doi.org/10.1016/j.ijrmms.2010.06.003
  13. Frith, R. and Reed, G. (2019), "Limitations and potential design risks when applying empirically derived coal pillar strength equations to real-life mine stability problems", Int. J. Min. Sci. Technol., 27(1), 17-25. http://doi.org/10.1016/j.ijmst.2018.11.024.
  14. Gonzalez-Nicieza, C., Alvarez-Fernandez, M.I., Menendez-Diaz, A. and Alvarez-Vigil, A.E. (2006), "A comparative analysis of pillar design methods and its application to marble mines", Rock Mech. Rock Eng., 39(5), 421-444. http://doi.org/10.1007/s00603-005-0078-z.
  15. Han, K.C., Ryu, D.W., Kim, S.K. and Bae, K.C. (2008), "Stability analysis of the spillway tunnel located on the granite region including fault fractured zone", Tunn. Undergr. Sp., 18(1), 58-68. http://doi.org/KJD:ART001246745
  16. Jaiswal, A. and Shrivastva, B.K. (2008), "Numerical simulation of coal pillar strength", Int. J. Rock Mech. Min. Sci., 46(4), 779-788. http://doi.org/10.1016/j.ijrmms.2008.11.003.
  17. Jawed, M. and Sinha, R.K. (2018), "Design of rhombus coal pillars and support for roadway stability and mechanizing loading of face coal using SDLs in a steeply inclined thin coal seam-a technical feasibility study.", Arab. J. Geosci., 11(15), 1-14. http://doi.org/10.1007/s12517-018-3747-4.
  18. Jeong, J.U., Choi, J.B., Huh, N.S. and Kim, Y.J. (2016), "Stress intensity factor and elastic crack opening displacement solutions of complex cracks in pipe using elastic finite-element analyses", J. Pressure Vessel Technol., 138(1). http://doi.org/10.1115/1.4031128.
  19. Kahraman, S., Soylemez, M. and Fener, M. (2008), "Determination of fracture depth of rock blocks from P-wave velocity", B. Eng. Geol. Environ., 67(1), 11-16. http://doi.org/10.1007/s10064-007-0110-5.
  20. Kirmaci, A. and Erkayaoglu, M. (2020), "Thermographic analysis of failure for different rock types under uniaxial loading.", Geomech. Eng., 23(6), 503-512. http://doi.org/10.12989/gae.2020.23.6.503.
  21. Kumar, A., Waclawik, P., Singh, R., Sam, S. and Korbel, J. (2019), "Per-formance of a coal pillar at deeper cover: Field and simulation studies", Int. J. Rock Mech. Min. Sci., 113, 322-332. http://doi.org/10.1016/j.ijrmms.2018.10.006.
  22. Lee, H., Oh, T.M. and Park, C. (2020), "Analysis of permeability in rock fracture with effective stress at deep depth", Geomech. Eng., 22(5), 375-384. http://doi.org/10.12989/gae.2020.22.5.375
  23. Li, X.Y., Zhang, N., Liang, D.X. and Zhao, Y.M. (2019), "Study on efficient utilization technology of coal pillar based on gobside entry driving in a coal mine with great depth and high production", Sustainability, 11(6), 1706. http://doi.org/10.3390/su11061706.
  24. Mathey, M. and Van der Merwe, J.N. (2016), "Critique of the South African squat coal pillar strength formula", J. S. Afr. I. Min. Metall,, 116(3), 291-299. http://doi.org/10.17159/2411-9717/2016/v116n3a11.
  25. Milisavljevic, V., Tosic, D., Cokorilo, V. and Ristovic, I. (2016), "Modelling of AT rockbolts parameters for "Soko" underground coal mine.", Tehnicki vjesnik. http://doi.org/10.17559/TV-20140825132622.
  26. Oge, I.F. (2018), "Prediction of top coal cavability character of a deep coal mine by empirical and numerical methods", J. Min. Sci., 54(5), 793-803. http://doi.org/10.1134/S1062739118054903.
  27. Please, C.P., Mason, D.P., Khalique, C.M., Ngnotchouye, J.M.T., Hutchinson, A.J., Van, M.J.N. and Yilmaz, H. (2013), "Fracturing of an Euler-Bernoulli beam in coal mine pillar extraction.", Int. J. Rock Mech. Min. Sci., 64, 132-138. http://doi.org/10.1016/j.ijrmms.2013.08.001.
  28. Saadati, M., Forquin, P., Weddfelt, K., Larsson, P.L. and Hild, F. (2018), "On the mechanical behavior of granite material with particular emphasis on the influence from pre-existing cracks and defects", J. Test. Eval., 46(1), 33-45. http://doi.org/10.1520/JTE20160072.
  29. Sasaoka, T., Mao, P., Shimada, H., Hamanaka, A. and Oya, J. (2020), "Numerical analysis of longwall gate-entry stability under weak geological condition: A case study of an Indonesian coal mine", Energies, 13(18). http://doi.org/10.3390/en13184710.
  30. Song, W.J., Qiao, W.J., Vladimir, V.P., Wu, D.H. and Li, Y.Z. "Research on the support technology of bolt and cable in deep high stress roadway", Proceedings of the Russian-Chinese Symposium "Coal in Century: Mining, Proceesing, Safety, Kemerovo, Russia, October.
  31. Vlahou, I. and Worster, M.G. (2015), "Freeze fracturing of elastic porous media: A mathematical model.", Proc. Royal Soc. A Math. Phys. Eng. Sci., 471, 2175. http://doi.org/10.1098/rspa.2014.0741.
  32. Waclawik, P., Kukutsch, R., Konicek, P., Ptacek, J., Kajzar, V., Jan, N., Stas, L., Soucek, K. and Vavro, M. (2017), "Stress state monitoring in the surroundings of the roadway ahead of longwall mining." Procedia Eng., 191, 560-567. http://doi.org/10.1016/j.proeng.2017.05.218.
  33. Wang, C.L., Chen, Z., Liao, Z.F., Hou, X.L., Li, H.T., Wang, A.W., Li, C.F., Qian, P.F., Li, G.Y. and Lu, H. (2020), "Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst.", J. Cent. South Univ., 27, 2834-2848. http://doi.org/10.1007/s11771-020-4506-8.
  34. Wang C.L., Hou, X.L. and Liu, Y.B. (2020), "Three-dimensional crack recognition by unsupervised machine learning", Rock Mech. Rock Eng., 54(2), 893-903. http://doi.org/10.1007/s00603-020-02287-w.
  35. Wang, Q., He, M.C., Yang, J., Gao, H.K., Jiang, B. and Yu, H.C. (2018), "Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines.", Int J Rock Mech Min Sci., 110, 1-8. http://doi.org/10.1016/j.ijrmms.2018.07.005
  36. Wattimena, R.K., Kramadibrata, S., Sidi, I.D. and Azizi, M.A. (2013), "Developing coal pillar stability chart using logistic regression", Int. J. Rock Mech. Min. Sci., 58, 55-60. http://doi.org/10.1016/j.ijrmms.2012.09.004,
  37. Xie, H.P., Gao, M.Z., Zhang, R., Peng, G.Y., Wang, W.Y. and Li, A.Q. (2019), "Study on the mechanical properties and mechanical response of coal mining at 1000 m or deeper", Rock Mech. Rock Eng., 52(5), 1-16. http://doi.org/10.1007/s00603-018-1509-y.
  38. Yang, D.W., Ma, Z.G., Qi, F.Z., Gong, P. and Zhang, R.R. (2017), "Optimizati on study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer", Geomech. Eng., 13(2), 195-215. http://doi.org/10.12989/gae.2017.13.2.195.