Acknowledgement
This work was supported by Incheon National University Research Concentration Professors Grant in 2019.
References
- Auricchio, F. and Sacco, E. (1997), "A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite", Int. J. Non-Linear Mech., 32(6), 1101-1114. https://doi.org/10.1016/S0020-7462(96)00130-8
- Chan, R.W. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005
- DesRoches, R., McCormick, J. and Delemont, M. (2004), "Cyclic properties of superelastic shape memory alloy wires and bars", J. Struct. Eng., 130(1), 38-46. https://doi.org/10.1061/(ASCE)0733-9445 (2004)130:1(38)
- Dezfuli, F.H. and Alam, M.S. (2015), "Hysteresis model of shape memory alloy wire-based laminated rubber bearing under compression and unidirectional shear loadings", Smart Mater. Struct., 24(6). https://doi.org/10.1088/ 0964-1726/24/6/065022
- Gao, N., Jeon, J.S., Hodgson, D.E. and DesRoches, R. (2016), "An innovative seismic bracing system based on a superelastic shape memory alloy ring", Smart Mater. Struct., 25(5), 055030. https://doi.org/10.1088/0964-1726/25/5/055030
- Haque, A.B.M.R. and Alam, M.S. (2017), "Hysteretic Behaviour of a Piston Based Self-centering (PBSC) Bracing System Made of Superelastic SMA Bars - A Feasibility Study", Structures, 12, 102-114. https://doi.org/10.1016/j.istruc.2017.08.004
- Hu, J.W. (2014), "Seismic analysis and evaluation of several recentering braced frame structures", Proceedings of the Institution of Mechanical Engineers, Part C; J. Mech. Eng. Sci., 228(5), 781-798. https://doi.org/10.1177/0954406213490600
- Hu, J.W. (2015), "Response of seismically isolated steel frame buildings with sustainable lead-rubber bearing (LRB) isolator devices subjected to near-fault (NF) ground motions", Sustainability, 7(1), 111-137. https://doi.org/10.3390/su7010111
- Hu, J.W. and Choi, E.S. (2014), "Seismic design, nonlinear analysis, and performance evaluation of recentering bucklingrestrained braced frames (BRBFs)", Int. J. Steel Struct., 14(4), 683-695. https://doi.org/10.1007 /s13296-014-1201-3 https://doi.org/10.1007/s13296-014-1201-3
- Lubliner, J. and Auricchio, F. (1996), "Generalized plasticity and shape-memory alloys", Int. J. Solids Struct., 33(7), 991-1003. https://doi.org/10.1016/0020-7683(95)00082-8
- Mansouri, I., Amiri, G.G., Hu, J.W., Khoshkalam, M., Soori, S. and Shahbazi, S. (2017), "Seismic fragility estimates of LRB base isolated frames using performance-based design", Shock Vib., 2017(1), 1-20. https://doi.org/10.1155/2017/5184790
- Massah, S.R. and Dorvar, H. (2014), "Design and analysis of eccentrically braced steel frames with vertical links using shape memory alloys", Smart Mater. Struct., 23(11), 115015. https://doi.org/10.1088/0964-1726/23 /11/115015
- Michael, S. (2013), ABAQUS/Standard User's Manual, Version 6.13.
- Mirzai, N.M. and Attarnejad, R. (2018), "Performance of EBFs equipped with an innovative shape memory alloy damper", Scientia Iranica. https://doi.org/10.24200/SCI.2018.50990.1955
- Mirzai, N.M. and Hu, J.W. (2019), "Pilot study for investigating the inelastic response of a new axial smart damper combined with friction devices", Steel Compos. Struct., Int. J., 32(3), 373-388. https://doi.org/10.12989/scs.2019.32.3.373
- Mirzai, N.M., Attarnejad, R. and Hu, J.W. (2018), "Enhancing the seismic performance of EBFs with vertical shear link using a new self-centering damper", Ing. Sismica, 35(4), 57-75.
- Qiu, C., Gong, Z., Peng, C. and Li, H. (2020), "Seismic vibration control of an innovative self-centering damper using confined SMA core", Smart Struct. Syst., Int. J., 25(2), 241-254. https://doi.org/10.12989/sss.2020.25.2.241
- Sgambitterra, E., Maletta, C. and Furgiuele, F. (2014), "Modeling and simulation of the thermo-mechanical response of NiTi-based Belleville springs", J. Intell. Mater. Syst. Struct., 27(1), 81-91. https://doi.org/10.1177/1045389X14560366
- Shi, F., Ozbulut, O.E. and Zhou, Y. (2019), "Influence of shape memory alloy brace design parameters on seismic performance of self-centering steel frame buildings", J. Int. Assoc. Struct. Control Monitor., 27(4). https://doi.org/10.1002/stc.2462
- Silwal, B., Ozbulut, O.E. and Michael, R.J. (2016), "Seismic collapse evaluation of steel moment resisting frames with superelastic viscous damper", J. Constr. Steel Res., 126, 26-36. https://doi.org/10.1016/j.jcsr.2016.07.002
- Speicher, M.S., DesRoches, R. and Leon, R.T. (2017), "Investigation of an articulated quadrilateral bracing system utilizing shape memory alloys", J. Constr. Steel Res., 130, 65-78. https://doi.org/10.1016/j.jcsr.2016.11.022
- Sultana, P. and Youssef, M.A. (2016), "Seismic performance of steel moment resisting frames utilizing superelastic shape memory alloys", J. Constr. Steel Res., 125, 239-251. https://doi.org/10.1016/j.jcsr.2016.06.019
- Sultana, P. and Youssef, M.A. (2018), "Seismic performance of modular steel frames equipped with shape memory alloy braces", Bull. Earthq. Eng., 16(11), 5503-5527. https://doi.org/10.1007/s10518-018-0394-9
- Zareie, S., Mirzai, N., Alam, M.S. and Seethlaer, R.J. (2017), "A dynamic analysis of a novel shape memory alloy based bracing system", CSCE-SCGC 2017 Annual General Conference, Vancouver, BC, Canada, May.
- Zareie, S., Alam, M.S., Seethaler, R.J. and Zabihollah, A. (2019), "A shape memory alloy-magnetorheological fluid core bracing system for civil engineering applications: a feasibility study", Proceedings of the 7th International Specialty Conference on Engineering Mechanics and Materials, Montreal, Canada, June.