DOI QR코드

DOI QR Code

이중 자기치유 메커니즘을 통한 강판의 내부식성 코팅

Anticorrosive Coating Material with Dual Self-healing Capability for Steel Coating

  • 이향무 (경북대학교 응용화학공학부) ;
  • 윤수민 (경북대학교 응용화학공학부) ;
  • 김진철 (한국화학연구원 그린정밀화학연구센터) ;
  • 조수현 (주식회사 포스코) ;
  • 정인우 (경북대학교 응용화학공학부)
  • 투고 : 2021.03.23
  • 심사 : 2021.04.26
  • 발행 : 2021.06.30

초록

자기치유 소재를 이용하여 강판을 코팅하는 경우, 코팅 소재에 상처가 날 경우 스스로 상처를 치유하여 강판이 부식되는 것을 방지할 수 있다. 하지만 자기치유 과정에는 시간이 소요되며, 따라서 자기치유가 되기 전에 강판의 상처가 부식 될 수 있다. 본 연구에서는 가역적인 hindered urea bond(HUB)를 통하여 가교 결합을 형성하면서 동시에 부식 방지제로써 작용하는 DTBEDA를 이용하여 듀얼자기치유 메커니즘을 가지는 코팅 소재를 제조하였다. 또한 제조된 소재를 강판에 코팅하여 의료용 메스와 나노/마이크로 압입시험기를 통하여 스크래치에 대한 자기치유 성능을 확인하였으며, DTBEDA의 내부식성 효과를 전기화학 임피던스 분광법(EIS)을 통하여 분석하였다.

Steel plates coated by self-healable polymer still can be rusted since it takes time to be healed. In this study, dual self-healing coating material is developed using corrosion inhibitor (DTBEDA) which can form hindered urea (HUB) as reversible cross-linking bond at the same time. Developed dual self-healing polymer is coated on steel plate, and scratch healing property was investigated by surgical blades and nano/micro indentation tester. The anticorrosion effect of DTBEDA was investigated by electrochemical impedance spectroscopy (EIS).

키워드

과제정보

This work was supported by POSCO (20176027) and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1I1A3074491). H. M. Lee and S. Yun contributed equally to this work.

참고문헌

  1. N. Abacha, M. Kubouchi, K. Tsuda, and T. Sakai, Express Polym. Lett., 1, 364 (2007). https://doi.org/10.3144/expresspolymlett.2007.51
  2. A. Stankiewicz, I. Szczygiel and B. Szczygiel, J. Mater. Sci., 48, 23 (2013).
  3. A. Lutz., O. V. D. Berg, J. V. Damme, K. Verheyen, E. Bauters, I. D. Graeve, F. E. D. Prez, and H. Terryn, ACS Appl. Mater. Inter., 7, 175 (2015). https://doi.org/10.1021/am505621x
  4. S. H. Ju, J. C. Kim, S. M. Noh, and I. W. Cheong, Macromol. Rapid Comm., 39, 1800689 (2018). https://doi.org/10.1002/marc.201800689
  5. K. J. Baek, H. M. Lee, S. H. Ju, Y. R. Kim, A. Choe, H. Ko, G. Y. Kim, M. P. Kim, K. C. Kim, and I. W. Cheong, Prog. Org. Coat., 148, 105813 (2020). https://doi.org/10.1016/j.porgcoat.2020.105813
  6. B. Mizrahi, X. Khoo, H. H. Chiang, K. J. Sher, R. G. Feldman, J. J. Lee, S. Irusta, and D. S. Kohane, Langmuir, 29, 10087 (2013). https://doi.org/10.1021/la4014575
  7. F. Wang, H. Cong, J. Xing, S. Wang, Y. Shen, and B. Yu, Talanta, 221, 121493 (2021). https://doi.org/10.1016/j.talanta.2020.121493
  8. J. E. Stumpel, D. J. Broer, and A. P. H. J. Schenning, Chem. Commun., 50, 15839 (2014). https://doi.org/10.1039/c4cc05072j
  9. M. Osial, and D. Wilinski, J. Build. Chem., 1, 42 (2016).
  10. M. W. Urban, Macromol. Rapid. Comm., 16, 329 (2006). https://doi.org/10.1002/marc.1995.030160416
  11. B. Krishnakumar, R. V. S. P. Sanka, W. H. Bimnder, V. Parthasarthy, S. Rana, N. Karak, Chem. Eng. J., 385, 123820 (2020). https://doi.org/10.1016/j.cej.2019.123820
  12. M. Hong, and E. Y. -X. Chen, Green Chem., 19, 3692 (2017). https://doi.org/10.1039/c7gc01496a
  13. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, Nature, 409, 794 (2001). https://doi.org/10.1038/35057232
  14. K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, Nat. Mater., 6, 581 (2007). https://doi.org/10.1038/nmat1934
  15. D. M. Kim, H. C. Yu, H. I. Yang, Y. J. Cho, K. M. Lee, and C. M. Chung, Materials, 10, 114 (2017). https://doi.org/10.3390/ma10020114
  16. Z. Xu, L. Chem, L. Lu, R. Du, W. Ma, Y. Cai, X. An, H. Wu, Q. Luo, Q. Xu, Q. Zhang, and X. Jia, Adv. Funct. Mater., 31, 2006432 (2021). https://doi.org/10.1002/adfm.202006432
  17. F. Herbst, D. Dohler, P. Michael, and W. H. Binder, Macromol. Rapid Comm., 34, 203 (2013). https://doi.org/10.1002/marc.201200675
  18. Z. Hu, D. Zhang, F. Lu, W. Yuan, X. Xu, Q. Zhang, H. Liu, Q. Shao, Z. Guo, and Y. Huang, Macromolecules, 51, 5294 (2018). https://doi.org/10.1021/acs.macromol.8b01124
  19. L. T. Nguyen, H. Q. Pham, D. T. T. Phung, T. T. Truong, H. T. Hguyen, T. C. D. Doan, C. M. Dang, H. L. Tran, P. T. Mai, D. T. Tran, T. Q. Nguyen, N. Q. Ho, L. T. Nguyen, Polymer, 188, 122144 (2020). https://doi.org/10.1016/j.polymer.2019.122144
  20. H. M. Lee, S. Perumal, G. Y. Kim, J. C. Kim, Y. R. Kim, M. P. Kim, H. Ko, Y. Rho, and I. W. Cheong, Polym. Chem., 11, 3701 (2020). https://doi.org/10.1039/d0py00310g
  21. H. Ying, Y. Zhang, and K. Cheng, Nat. Commun., 5, 1 (2014).
  22. G. Y. Kim, S. Sung, M. P. Kim, S. C. Kim, S.-H. Lee, Y. I. Park, S. M. Noh, I. W. Cheong, J. C. Kim, Appl. Surf. Sci., 505, 144546 (2020). https://doi.org/10.1016/j.apsusc.2019.144546
  23. Y. Yang, and M. W. Urban, Polym. Chem., 8, 303 (2017). https://doi.org/10.1039/C6PY01221C
  24. J. C. Kim, Y. I. Park, S.-H. Lee, S. M. Noh, J. Adhes. Interface, 19, 1, 30 (2018).
  25. I. W. Cheong, S. H. Ju, U.S. Patent 10920061 (2021).