DOI QR코드

DOI QR Code

Accuracy of Automatic Cephalometric Analysis Programs on Lateral Cephalograms of Preadolescent Children

소아 환자 대상의 자동 계측점 식별 프로그램의 정확성 평가

  • Song, Min Sun (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Kim, Seong-Oh (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Kim, Ik-Hwan (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Kang, Chung-min (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Song, Je Seon (Department of Pediatric Dentistry, College of Dentistry, Yonsei University)
  • 송민선 (연세대학교 치과대학 소아치과학교실) ;
  • 김성오 (연세대학교 치과대학 소아치과학교실) ;
  • 김익환 (연세대학교 치과대학 소아치과학교실) ;
  • 강정민 (연세대학교 치과대학 소아치과학교실) ;
  • 송제선 (연세대학교 치과대학 소아치과학교실)
  • Received : 2020.11.14
  • Accepted : 2021.01.11
  • Published : 2021.08.31

Abstract

The aim of this study was to evaluate the accuracy of 3 different automatic landmark identification programs on lateral cephalgrams and the clinical acceptability in pediatric dentistry. Sixty digital cephalometric radiographs of 7 to 12 years old healthy children were randomly selected. Fourteen landmarks were chosen for assessment and the mean of 3 measurements of each landmark by a single examiner was defined as the baseline landmarks. The mean difference between an automatically identified landmark and the baseline landmark was measured for each landmark on each image. The total mean difference of 3 automatic programs compared to the baseline landmarks were 2.53 ± 1.63 mm. Errors among 3 programs were not significantly different for 12 of 14 landmarks except Orbitale and Gonion. The automatic landmark identification programs showed significant higher mean detection errors than the manual method. The programs couldn't be used as the 1st tool to replace human examiners. But considering short consuming time, these results indicate that all 3 programs have sufficient validity to be used in pediatric dental clinic.

이 연구의 목적은 소아 환자들의 측모방사선 사진을 대상으로 시판되는 3종의 자동 계측점 식별 프로그램의 정확성을 평가하고 소아치과 임상에서의 사용 가능성을 예측하는 것이다. 영구 중절치가 맹출한 만 7 - 12세 건강한 어린이 60명의 측모방사선 사진에 14개의 계측점을 표시하였다. 1명의 검사자가 3회 반복 측정한 결과의 평균을 기준점으로 정의하여 자동으로 식별된 계측점과의 거리 차이를 계측하였다. 3종의 자동 계측점 식별 프로그램은 평균 2.53 mm의 오차를 나타냈다. Orbitale과 Gonion을 제외한 12개의 계측점에서 3종의 프로그램 사이에 유의미한 차이는 없었으나, 검사자가 모든 계측점에서 3종의 프로그램보다 유의미하게 높은 정확도를 보였다. 이 연구를 통하여 사춘기 전 소아의 측모방사선 분석 시 자동 계측점 식별 프로그램이 검사자를 대체할 정도는 아니나 짧은 소요시간과 임상 허용 가능한 범위 이내의 정확도를 갖는 효과적인 진단 보조기구임을 알 수 있다.

Keywords

Acknowledgement

This study was supported by a grant from Laonpeople INC., (2-2019-0036).

References

  1. Shahidi S, Oshagh M, Danaei SM, et al . : Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofac Radiol, 42:20110187, 2013. https://doi.org/10.1259/dmfr.20110187
  2. Broadbent BH : A new x-ray technique and its application to orthodontia. Angle Orthod, 1:45-66, 1931.
  3. Baumrind S, Miller DM : Computer-aided head film analysis: the University of California San Francisco method. Am J Orthod, 78:41-65, 1980. https://doi.org/10.1016/0002-9416(80)90039-1
  4. Cohen AM, Ip HH, Linney AD : A preliminary study of computer recognition and identification of skeletal landmarks as a new method of cephalometric analysis. Br J Orthod, 11:143-154, 1984. https://doi.org/10.1179/bjo.11.3.143
  5. Arik S, Ibragimov B, Xing L : Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging, 4:014501, 2017. https://doi.org/10.1117/1.JMI.4.1.014501
  6. Tanikawa C, Yamamoto T, Yagi M, Takada K : Automatic recognition of anatomic features on cephalograms of preadolescent children. Angle Orthod, 80:812-820, 2010. https://doi.org/10.2319/092909-474.1
  7. Stabrun AE, Danielsen K : Precision in cephalometric landmark indentification. Eur J Orthod, 4:185-196, 1982. https://doi.org/10.1093/ejo/4.3.185
  8. Houston WJ : The analysis of errors in orthodontic measurements. Am J Orthod, 83:382-390, 1983. https://doi.org/10.1016/0002-9416(83)90322-6
  9. Savage AW, Showfety KJ, Yancey J : Repeated measures analysis of geometrically constructed and directly determined cephalometric points. Am J Orthod Dentofacial Orthop, 91:295-299, 1987. https://doi.org/10.1016/0889-5406(87)90169-7
  10. Rakosi T : An atlas of manual cephalometric radiography. Wolfe Medical Publications, 7-19, 1982.
  11. Tong W, Nugent ST, Fay DF, et al . : Landmarking of cephalograms using a microcomputer system. Comput Biomed Res, 23:358-379, 1990. https://doi.org/10.1016/0010-4809(90)90027-A
  12. Yue W, Yin D, Xu T, et al . : Automated 2-D cephalometric analysis on X-ray images by a model-based approach. IEEE Trans Biomed Eng, 53:1615-1623, 2006. https://doi.org/10.1109/TBME.2006.876638
  13. Rudolph DJ, Sinclair PM, Coggins JM : Automatic computerized radiographic identification of cephalometric landmarks. Am J Orthod Dentofacial Orthop, 113:173-179, 1998. https://doi.org/10.1016/S0889-5406(98)70289-6
  14. Hutton TJ, Cunningham S, Hammond P : An evaluation of active shape models for the automatic identification of cephalometric landmarks. Eur J Orthod, 22:499-508, 2000. https://doi.org/10.1093/ejo/22.5.499
  15. Liu JK, Chen YT, Cheng KS : Accuracy of computerized automatic identification of cephalometric landmarks. Am J Orthod Dentofacial Orthop, 118:535-540, 2000. https://doi.org/10.1067/mod.2000.110168
  16. Giordano D, Leonardi R, Distefano ML, et al . : Automatic Landmarking of Cephalograms by Cellular Neural Networks. Artificial Intelligence in Medicine, 3581:333-342, 2005. https://doi.org/10.1007/11527770_46
  17. Leonardi R, Giordano D, Maiorana F : An evaluation of cellular neural networks for the automatic identification of cephalometric landmarks on digital images. J Biomed Biotechnol, 2009:717102, 2009.
  18. Baumrind S, Frantz RC : The reliability of head film measurements. 1. Landmark identification. Am J Orthod, 60:111-127, 1971. https://doi.org/10.1016/0002-9416(71)90028-5
  19. Kazandjian S, Kiliaridis S, Mavropoulos A : Validity and reliability of a new edge-based computerized method for identification of cephalometric landmarks. Angle Orthod, 76:619-624, 2006.
  20. Arnett GW, Bergman RT : Facial keys to orthodontic diagnosis and treatment planning. Part I. Am J Orthod Dentofacial Orthop, 103:299-312, 1993. https://doi.org/10.1016/0889-5406(93)70010-L
  21. Arnett GW, Jelic JS, Bergman R, et al . : Soft tissue cephalometric analysis:diagnosis and treatment planning of dentofacial deformity. Am J Orthod Dentofacial Orthop, 116:239-253, 1999. https://doi.org/10.1016/S0889-5406(99)70234-9
  22. Hwang HW, Park JH, Lee SJ, et al. : Automated identification of cephalometric landmarks: Part 2- Might it be better than human? Angle Orthod, 90:69-76, 2020. https://doi.org/10.2319/022019-129.1
  23. Anuwongnukroh N, Dechkunakorn S, Kangern S, et al. : Accuracy of automatic cephalometric software on landmark identification. Mater Sci Eng, 265:1-6, 2017. https://doi.org/10.1016/S0921-5093(99)00013-1
  24. Erkan M, Gurel HG, Nur M, Demirel B : Reliability of four different computerized cephalometric analysis programs. Eur J Orthod, 34:318-321, 2012. https://doi.org/10.1093/ejo/cjr008
  25. McWilliam JS, Welander U : The effect of image quality on the identification of cephalometric landmarks. Angle Orthod, 48:49-56, 1978.
  26. Trpkova B, Major P, Prasad N, Nebbe B : Cephalometric landmarks identification and reproducibility: a meta analysis. Am J Orthod Dentofacial Orthop, 112:165-170, 1997. https://doi.org/10.1016/S0889-5406(97)70242-7
  27. Richardson A : A comparison of traditional and computerized methods of cephalometric analysis. Eur J Orthod, 3:15-20, 1981. https://doi.org/10.1093/ejo/3.1.15