DOI QR코드

DOI QR Code

Solubility of Mixed Lanthanide Hydroxide and Oxide Solid Solutions

  • Received : 2021.07.09
  • Accepted : 2021.08.19
  • Published : 2021.09.30

Abstract

The solubilities of different multicomponent lanthanide oxide (Ln2O3) solid solutions including binary (Ln1 and Ln2 = La, Nd, Eu, or Tm), ternary (Ln1, Ln2, and Ln3 = La, Nd, Eu, or Tm), and higher systems (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were studied after aging for four weeks at 60℃. Our recent study revealed that the phase transformations in binary ((La, Nd) and (La, Eu)) and ternary (La, Nd, Eu) systems are responsible for the formation of (La, Nd)(OH)3, (La, Eu)(OH)3, and (La, Nd, Eu)(OH)3 solid solutions, respectively. The variations in the mole fractions of La3+, Nd3+, and Eu3+ in the sample solutions of these hydroxide solid solutions indicated that a thermodynamic equilibrium might account for the apparent La, Nd, and Eu solubilities. Conversely, the binary and ternary systems containing Tm2O3 as the heavy lanthanide oxide retained the oxide-based solid solutions, and their solubility behaviors were dominated by their congruent dissolutions. In the higher multicomponent system, the X-ray diffraction patterns of the solid phases, before and after contact with the aqueous phase indicated the formation of a stable oxide solid solution and their solubility behavior was explained by its congruent dissolution.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support from the Japan Society for the Promotion of Science KAKENHI (Grant No. 20H02665).

References

  1. I. Grenthe, X. Goana, A.V. Plyasunov, L. Rao, W.H. Runde, B. Grambow, R.J.M. Konings, A.L. Smith, and E.E. Moore. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, OECD/NEA Report, Vol. 14, NEA 7500 (2020).
  2. C. Marquardt, X. Gaona, C. Bube, and M. Altmaier, THEREDA, Thermodynamic Reference Database: Final Report Part KIT-INE, Database for Radionuclides, Karlsruher Institut fur Technologie (KIT), Institut fur nukleare Entsorgung, Campus Nord (2015).
  3. E. Gifaut, M. Grive, Ph. Blanc, Ph. Vieillard, E. Colas, H. Gailhanou, S. Gaboreau, N. Marty, B. Made, and L. Duro, "Andra Thermodynamic Database for Performance Assessment: ThermoChimie", Appl. Geochem., 49, 225-236 (2014). https://doi.org/10.1016/j.apgeochem.2014.05.007
  4. A. Kitamura, K. Fujiwara, R. Doi, and Y. Yoshida. Update of JAEA-TDB: Additional Selection of Thermodynamic Data for Solid and Gaseous Phases on Nickel, Selenium, Zirconium, Technetium, Thorium, Uranium, Neptunium Plutonium and Americium, Update of Thermodynamic Data on Iodine, and Some Modifications, Japan Atomic Energy Agency Report, JAEA-Data/Code, 2012-006 (2012).
  5. S.A. Wood, "The Aqueous Geochemistry of the RareEarth Elements and Yttrium: 2. Theoretical Predictions of Speciation in Hydrothermal Solutions to 350℃ at Saturation Water Vapor Pressure", Chem. Geol., 88(1-2), 99-125 (1990). https://doi.org/10.1016/0009-2541(90)90106-H
  6. I.I. Diakonaov, K.V. Ragnarsdottir, and B.R. Tagirov, "Standard Thermodynamic Properties and Heat Capacity Equations of Rare Earth Hydroxides: II. Ce(III)-, Pr-, Sm-, Eu(III)-, Gd-, Tb-, Dy-, Ho-, Er-, Tm-, Yb-, and Y-hydroxides. Comparison of Thermochemical and Solubility Data", Chem. Geol., 151(1-4), 327-347 (1998). https://doi.org/10.1016/S0009-2541(98)00088-6
  7. P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions, Volume 1, Wiley-VCH, Weinheim (2016).
  8. E.D. Fou de Kerdaniel, N. Clavier, N. Dacheux, O. Terra, and R. Podor, "Actinide Solubility-Controlling Phases During the Dissolution of Phosphate Ceramics", J. Nucl. Mater., 362(2-3), 451-458 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.132
  9. N. Huittinen, Y. Arinicheva, P.M. Kowalski, V.L. Vnograd, S. Neumeier, and D. Bosbach, "Probing Structural Homogeneity of La1-xGdxPO4 Monazite-Type Solid Solutions by Combined Spectroscopic and Computational Studies", J. Nucl. Mater., 486, 148-157 (2017). https://doi.org/10.1016/j.jnucmat.2017.01.024
  10. Md. Moniruzzaman, T. Kobayashi, and T. Sasaki, "Phase Transformation of Mixed Lanthanide Oxides in an Aqueous Solution", J. Nucl. Radiochem. Sci., 21, 15-27 (2021).
  11. P.D. Glynn and E.J. Reardon, "Solid-Solution Aqueous-Solution Equilibria: Thermodynamic Theory and Representation", Am. J. Sci., 290, 164-201 (1990). https://doi.org/10.2475/ajs.290.2.164
  12. P.D. Glynn, E.J. Reardon, L.N. Plummer, and E. Busenberg, "Reaction Paths and Equilibrium End-Points in Solid-Solution Aqueous-Solution Systems", Geochem. Cosmochim. Acta, 54(2), 267-282 (1990). https://doi.org/10.1016/0016-7037(90)90317-E
  13. P. Glynn, "Solid-Solution Solubilities and Thermodynamics: Sulfates, Carbonates and Halides", Rev. Mineral. Geochem., 40(1), 481-511 (2000). https://doi.org/10.2138/rmg.2000.40.10
  14. H. Gamsjager, E. Konigsberger, and W. Preis, "Lippmann Diagrams: Theory and Application to Carbonate Systems", Aquat. Geochem., 6(2), 119-132 (2000). https://doi.org/10.1023/A:1009690502299
  15. J. Bruno, D. Bosbach, D. Kulik, and A. Navrotsky. Chemical Thermodynamics of Solid Solutions of Interest in Radioactive Waste Management, OECD/NEA Report, Vol. 10 (2007).
  16. R. Forsyth. An Evaluation of Results From the Experimental Programme Performed in the Studsvik Hot Cell Laboratory, Swedish Nuclear Fuel and Waste Management Co. Report, SKB-TR 97-25 (1997).
  17. S. Zhong and A. Mucci, "Partitioning of Rare Earth Elements (REEs) Between Calcite and Seawater Solutions at 25℃ and 1 atm, and High Dissolved REE Concentrations", Geochem. Cosmochim. Acta, 59(3), 443-453 (1995). https://doi.org/10.1016/0016-7037(94)00381-U
  18. L.Z. Lakshtanov and S.L.S. Stipp, "Experimental Study of Europium(III) Coprecipitation With Calcite", Geochem. Cosmochim. Acta, 68(4), 819-827 (2004). https://doi.org/10.1016/j.gca.2003.07.010
  19. Md. Moniruzzaman, T. Kobayashi, and T. Sasaki, "Solubility and Solid Phase of Trivalent Lanthanide Hydroxides and Oxides", J. Nucl. Radiochem. Sci., 20, 32-42 (2020). https://doi.org/10.14494/jnrs.20.32
  20. M.H. Nguyen, S.J. Lee, and W.M. Kriven, "Synthesis of Oxide Powders by Way of a Polymeric Steric Entrapment Precursor Route", J. Mater. Res., 14(8), 3417-3426 (1999). https://doi.org/10.1557/JMR.1999.0462
  21. M.A. Gulgun, M.H. Nguyen, and W.M. Kriven, "Polymerized Organic-Inorganic Synthesis of Mixed Oxides", J. Am. Ceram. Soc., 82(3), 556-560 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01800.x
  22. V. Neck, M. Altmaier, T. Rabung, J. Lutzenkirchen, and T. Fanghanel, "Thermodynamics of Trivalent Actinides and Neodymium in NaCl, MgCl2, and CaCl2 Solutions: Solubility, Hydrolysis, and Ternary Ca-M(III)-OH Complexes", Pure Appl. Chem., 81(9), 1555-1568 (2009). https://doi.org/10.1351/pac-con-08-09-05
  23. R.J.M. Konings, O. Benes, A. Kovacs, D. Manara, and D. Sedmidubsky, "The Thermodynamic Properties of the F-Elements and Their Compounds. Part 2. The Lanthanide and Actinide Oxides", J. Phys. Chem. Ref. Data, 43(1), 013101 (2014). https://doi.org/10.1063/1.4825256
  24. I. Puigdomenech, "HYDRA (Hydrochemical Equilibrium- Constant Database) and MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) Programs," Royal Institute of Technology, Sweden. Accessed Jun. 24 2021. Available from: http://www.ke-mi.kth.se/medusa.
  25. C. Gausse, S. Szenknect, D.W. Qin, A. Mesbah, N. Clavier, S. Neumeier, D. Bosbach, and N. Dacheux, "Determination of the Solubility of Rhabdophanes LnPO4·0.667H2O (Ln = La to Dy)", Eur. J. Inorg. Chem., 4615-4630 (2016).