Acknowledgement
The present work was supported by the National Natural Science Foundation of China (No. 5217080601, 51578447), the Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan (No. 2020TD005), and Shaanxi Province Housing and Rural Construction Science and Technology Plan (No. 2019-K39). The financial supports are gratefully acknowledged and the data are available for the journal.
References
- Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012.
- Bahrani, N. and Kaiser, P.K. (2016), "Numerical investigation of the influence of specimen size on the unconfined strength of defected rocks", Comput. Geotech., 77, 56-67. https://doi.org/10.1016/j.compgeo.2016.04.004.
- Capuani, D. and Willis, J.R. (1997), "Wave propagation in elastic media with cracks part I: transient nonlinear response of a single crack", Eur. J. Mech. A/Solids, 16(3), 377-408. https://doi.org/10.1016/S0997-7538(99)80009-6.
- Cheng, Y., Song, Z.P., Jin, J.F., Wang, T. and Yang, T.T. (2020a), "Waveform characterisation and energy dissipation of stress wave based on modified SHPB tests", Geomech. Eng., 22(2), 187-196. https://doi.org/10.12989/gae.2020.22.2.187.
- Cheng, Y., Song, Z.P., Chang, X.X. and Wang, T. (2020b), "Energy evolution principles of shock - wave in sandstone under unloading stress", KSCE J. Civ. Eng., 24(10), 2912-2922. https://doi.org/10.1007/s12205-020-1691-9.
- Davies, E.D.H. and Hunter, S.C. (1963), "The dynamics compression testing of solids by the method of the split Hopkinson pressure bar", J. Mech. Phys. Solids, 11(1), 155-179. https://doi.org/10.1016/0022-5096(63)90050-4.
- Fan, S.Y., Song, Z.P., Zhang, Y.W. and Liu, N.F. (2020), "Case study of the effect of rainfall infiltration on a tunnel underlying the roadbed slope with weak inter-layer", KSCE J. Civ. Eng., 24(5), 1607-1619. https://doi.org/10.1007/s12205-020-1165-0.
- Hooker, J.N., Ruhl, M., Dickson, A.J., Hansen, L.N., Idiz, E., Hesselbo, S.P. and Cartwright, J. (2019), "Shale anisotropy and natural hydraulic fracture propagation: An example from the Jurassic (Toarcian) posidonienschiefer, Germany", J. Geophys. Res. Solid Earth, 125(3), 2019JB018442. https://doi.org/10.1029/2019JB018442.
- Kim, J.S., Kim, G.Y., Baik, M.H. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., 18(1), 11-20. https://doi.org/10.12989/gae.2019.18.1.011.
- Karma, A. and Lobkovsky, A.E. (2004), "Unsteady crack motion and branching in a phase-field model of brittle fracture", Phys. Rev. Lett., 92(24), 245510. https://doi.org/10.1103/PhysRevLett.92.245510.
- Komoroczi, A., Abe, S. and Urai, J.L. (2013), "Meshless numerical modeling of brittle-viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH)", Comput. Geosci., 17(2), 373-390. https://doi.org/10.1007/s10596-012-9335-x.
- Liyanage, P.P., Gamage, R.P. and Xu, T. (2013), "UDEC and RFPA2D simulations on the influence of the geometry of partially-spanning joints on rock mechanical behaviour", Nouvelles Du College Deurope, 62-70. http://arrow.monash.edu/vital/access/manager/Repository/mona sh:1.
- Lemaitre, J. (1984), "How to use damage mechanics", Nucl. Eng. Des., 80(2), 233-245. https://doi.org/10.1016/0029-5493(84)90169-9.
- Li, Y.W., Jiang, Y.D., Yang, Y.M., Zhang, H.X., Ren, Z., Li, H.T. and Ma, Z.G. (2016), "Research on loading rate effect of uniaxial compressive strength of coal", J. Min. Safety Eng., 33(4), 754-760. https://doi.org/10.13545/j.cnki.jmse.2016.04.028 (in Chinese).
- Li, Y.S. (1995), "Experimental analysis on the mechanical effects of loading rates on red sandstone", J. Tongji Univ., 23(3), 265-269 (in Chinese).
- Qi, C.Z., Wang, M.Y. and Qian, Q.H. (2009), "Strain-rate effects on the strength and fragmentation size of rocks", Int. J. Impact Eng., 36(12), 1355-1364. https://doi.org/10.1016/j.ijimpeng.2009.04.008.
- Mlakar, V., Hassani, F.P. and Momayez, M. (1993), "Crack development and acoustic emission in potash rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(3), 305-319. https://doi.org/10.1016/0148-9062(93)92732-6.
- Outer, A.D., Kaashoek, J.F. and Hack, H. (1995), "Difficulties with using continuous fractal theory for discontinuity surfaces", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32(1), 3-9. https://doi.org/10.1016/0148-9062(94)00025-X.
- Song, Z.P., Cheng, Y., Tian, X.X., Wang, J.B. and Yang, T.T. (2020), "Mechanical properties of limestone from Maixi tunnel under hydro-mechanical coupling", Arab. J. Geosci., 13(9), 1-11. https://doi.org/10.1007/s12517-020-05373-z.
- Sun, Y. and Yang, Y. (2021), "Energy and fatigue damage evolution of sandstone under different cyclic loading frequencies", Shock Vib., 1-9. https://doi.org/10.1155/2021/5585983.
- Stevens, J.L. and Holcomb, D.J. (1980), "A theoretical investigation of the sliding crack model of dilatancy", J. Geophys. Res., 85(B12), 7091-7100. https://doi.org/10.1029/JB085iB12p07091.
- Taheri, A., Zhang, Y.B. and Munoz, H. (2020), "Performance of rock crack stress thresholds determination criteria and investigating strength and confining pressure effects", Constr. Build. Mater., 243(1), 118263, https://doi.org/10.1016/j.conbuildmat.2020.118263.
- Wu, K., Shao, Z.S. and Qin, S. (2020), "An analytical design method for ductile support structures in squeezing tunnels", Arch. Civ. Mech. Eng., 20(3), 91-101. https://doi.org/10.1007/s43452-020-00096-0.
- Wu, K., Shao, Z.S., Qin, S., Zhao, N. and Chu, Z. (2021a), "An improved non-linear creep model for rock applied to tunnel displacement prediction", Int. J. Appl. Mech., 14, 1-9. https://doi.org/10.1142/S1758825121500958.
- Wu, K., Shao Z.S., Qin, S., Wei, W. and Chu, Z. (2021b), "A critical review on the performance of yielding supports in squeezing tunnels", Tunn. Undergr. Sp. Tech., 115, 103815. https://doi.org/10.1016/j.tust.2021.103815.
- Wu, K., Shao, Z.S., Sharifzadeh, M., Hong, S. and Qin, S. (2021c), "Analytical computation of support characteristic curve for circumferential yielding lining in tunnel design", J. Rock Mech. Geotech. Eng., 13(1), 1-9. https://doi.org/10.1016/j.jrmge.2021.06.001.
- Zhao, N., Shao, Z.S., Wu, K., Chu, Z. and Qin, S. (2021), "Time-dependent solutions for lined circular tunnels considering rockbolts reinforcement and face advancement effects", Int. J. Geomech., 21(10), 04021179. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002130.
- Zhou, Y., Su, S.R. and Ma, H.S. (2020), "Experimental research on elastic modulus evolution of chlorite phyllite under cyclic loading", J. Cent. South Univ. Nat. Sci., 51(3), 783-792 (in Chinese). https://doi.org/10.11817/j.issn.1672-7207.2020.03.024.