Acknowledgement
본 연구는 울산대학교의 2016년도 연구비 지원 사업에 의하여 연구되었음.
References
- C. W. Hsu, C. J. Lin(2002), "A comparison of methods for multiclass support vector machines." Neural Networks, IEEE Transactions on, 13(20):415-425. https://doi.org/10.1109/72.991427
- Markets and Markets(2017), Machine vision market. R&D Special Zone Promotion Foundation. www.innopolis.or.kr
- E. M. Park(2013), "Classifying imbalanced data using an SVM ensemble with K-means clustering in semiconductor test process." Master's thesis, Sungkyunkwan University, Graduate School.
- J. Park, C. Hwang, K. Bae(2013), "Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions." Journal of the Korea Institute of Information and Communication Engineering, 17(5):1083-1088. https://doi.org/10.6109/JKIICE.2013.17.5.1083
- V. Vapnik(1995a), The nature of statistical learning theory. New York: Springer-Verlag.
- V. Vapnik(1995b), "Support-vector networks." Machine Learning, 20(3):273-279. https://doi.org/10.1007/BF00994018
- K. Veropoulos, C. Campbell, N. Cristianini(1999), "Controlling the sensitivity of support vector machines." Proceedings of the International Joint Conference on AI, 55-60.
- Wikipedia(2015), Support vector machine. https://ko.wikipedia.org/wiki/support_vector_machine (Accessed on 2017.10.20.).
- Y. Yang, I. Oh, R. Kang(2019), Data science with R. Hanbit Academy.