Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원 공공혁신조달연계 무인이동체 및 SW플랫폼 개발사업의 연구비지원 (무인이동체기반 접근취약 철도시설물 자동화점검시스템 개발)에 의해 수행되었습니다.
References
- Abdel-Qader, I., Abudayyeh, O., Kelly, M.E. (2003). "Analysis of edge-detection techniques for crack identification in bridges." Journal of Computing in Civil Engineering, Vol. 17, No. 4, pp. 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- Amhaz, R., Chambon, S., Idier, J., Baltazart, V. (2016). "Automatic crack detection on two-dimensional pavement images: An algorithm based on minimal path selection." IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 10, pp. 2718-2729. https://doi.org/10.1109/TITS.2015.2477675
- Chambon, S., Moliard, J.M. (2011). "Automatic road pavement assessment with image processing: Review and comparison." International Journal of Geophysics, Vol. 2011, pp. 556-575.
- Chan, B., Guan, H., Jo, J., Blumenstein, M. (2015). "Towards UAV-based bridge inspection systems: A review and an application perspective." Structural Monitoring and Maintenance, Vol. 2, No. 3, pp. 283-300. https://doi.org/10.12989/smm.2015.2.3.283
- Chanda, S., Bu, G., Guan, H., Jo, J., Pal, U., Loo, Y., Blumenstein, M. (2014). "Automatic bridge crack detection - a texture analysis-based approach." IAPR Workshop on Artificial Neural Networks in Pattern Recognition, Montreal, Canada, pp. 193-203.
- De Melo, R.R., Costa, D.B., Alvares, J.S., Irizarry, J. (2017). "Applicability of unmanned aerial system (UAS) for safety inspection on construction sites." Safety Science, Vol. 98, pp. 174-185. https://doi.org/10.1016/j.ssci.2017.06.008
- Gavilan, M., Balcones, D., Marcos, O., Llorca, D.F., Sotelo, M.A., Parra, I., Amirola, A. (2011). "Adaptive road crack detection system by pavement classification." Sensors, Vol. 11, No. 10, pp. 9628-9657. https://doi.org/10.3390/s111009628
- Giakoumis, I., Nikolaidis, N., Pitas, I. (2005). "Digital image processing techniques for the detection and removal of cracks in digitized paintings." IEEE Transactions on Image Processing, Vol. 15, No. 1, pp. 178-188. https://doi.org/10.1109/TIP.2005.860311
- Irizarry, J., Gheisari, M., Walker, B.N. (2012). "Usability assessment of drone technology as safety inspection tools." Journal of Information Technology in Construction (ITcon), Vol. 17, No. 12, pp. 194-212.
- Jahanshahi, M.R., Kelly, J.S., Masri, S.F., Sukhatme, G.S. (2009). "A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures." Structure and Infrastructure Engineering, Vol. 5, No. 6, pp. 455-486. https://doi.org/10.1080/15732470801945930
- Kaseko, J.M., Ritchie, S.G. (1993). "A neural network-based methodology for pavement crack detection and classification." Transportation Research Part C: Emerging Technologies, Vol. 1, No. 4, pp. 275-291. https://doi.org/10.1016/0968-090X(93)90002-W
- Kim, M., Kim, K., Choi, S. (2017) "Development of automatic crack identification algorithm for a concrete sleeper using pattern recognition." Journal of the Korean Society for Railway, Vol. 20, No. 3, pp. 374-381. https://doi.org/10.7782/JKSR.2017.20.3.374
- Lee, B.J., Shin, D.H., Seo, J.W., Jung, J.D., Lee, J.Y. (2011). Intelligent Bridge Inspection using Remote Controlled Robot and Image Processing Technique. International Symposium on Automation and Robotics in Construction (ISARC), Seoul, Korea, pp. 1426-1431.
- Lee, H.B., Kim, J.W., Jang, I.Y. (2012). "Development of automatic crack detection system for concrete structure using image processing method." Journal of the Korea institute for structural maintenance and inspection, Vol. 16, No. 1, pp. 64-77. https://doi.org/10.11112/JKSMI.2012.16.1.064
- Long, J., Shelhamer, E., Darrell, T. (2015). "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440.
- Lovelace, B., Zink, J. (2015). Unmanned Aerial Vehicle Bridge Inspection Demonstration Project. Research Project. Final Report, Minnesota Department of Transportation Research Services & Library, USA, pp. 40.
- Lu, M., Hu, Y., Lu, X. (2019). "Dilated Light-Head R-CNN using tri-center loss for driving behavior recognition." Image and Vision Computing, Vol. 90, pp. 103800. https://doi.org/10.1016/j.imavis.2019.08.004
- Miyamoto, A., Konno, M., Bruhwiler, E. (2007). "Automatic crack recognition system for concrete structures using image processing approach." Asian Journal of Information Technology, Vol. 6, No. 5, pp. 553-561.
- Na, Y.H., Park, M.Y., Park, J.S., Park, S.B., Kwon, S.G. (2018). "Development of automatic crack detection using the Gabor Filter for concrete structures of railway tracks." Journal of the Society of Disaster Information, Vol. 14, No. 4, pp. 458-465.
- Ronneberger, O., Fischer, P., Brox, T. (2015). "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical Image Computing and Computer-assisted Intervention. Springer, Cham, Munich, Germany, pp. 234-241.