과제정보
The study was funded by the Key Technologies R&D Program of Tianjin (No. 20YFZCSN00910).
참고문헌
- Muynck WD, Cox K, Belie ND, Verstraete W. 2008. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22: 875-885. https://doi.org/10.1016/j.conbuildmat.2006.12.011
- Pacheco-Torgala F, Labrincha JA. 2013. Biotech cementitious materials: Some aspects of an innovative approach for concrete with enhanced durability. Constr. Build. Mater. 40: 1136-1141. https://doi.org/10.1016/j.conbuildmat.2012.09.080
- Seifan M, Berenjian A. 2018. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World J. Microbiol. Biotechnol. 34: 168. https://doi.org/10.1007/s11274-018-2552-2
- Tait K, Sayer JA, Gharieb MM, Gadd GM. 1999. Fungal production of calcium oxalate in leaf litter microcosms. Soil Biol. Biochem. 31: 1189-1192. https://doi.org/10.1016/S0038-0717(99)00008-5
- Seifan M, Samani AK, Berenjian A. 2016a. Bioconcrete: next generation of self-healing concrete. Appl. Microbiol. Biotechnol. 100: 2591-2602. https://doi.org/10.1007/s00253-016-7316-z
- Anderson S, Appanna VD, Huang J, Viswanatha T. 1992. A novel role for calcite in calcium homeostasis. FEBS Lett. 308: 94-96. https://doi.org/10.1016/0014-5793(92)81059-U
- Achal V, Mukherjee A, Reddy MS. 2011. Effect of calcifying bacteria on permeation properties of concrete structures. J. Ind. Microbiol. Biotechnol. 38: 1229-1234. https://doi.org/10.1007/s10295-010-0901-8
- Dhami NK, Mukherjee A, Reddy MS. 2016. Applicability of bacterial biocementation in sustainable construction materials. Asia-Pac J. Chem. Eng. 11: 795-802. https://doi.org/10.1002/apj.2014
- Li M, Zhu X, Mukherjee A, Huang M, Achal V. 2017. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content. J. Hazard Mater. 329: 178-184. https://doi.org/10.1016/j.jhazmat.2017.01.035
- Knoll AH. 2003. Biomineralization and evolutionary history. Rev. Mineral. Geochem. 54: 329-356. https://doi.org/10.2113/0540329
- Dick J, Windt WD, Graef BD, Saveyn H, Meeren PVD, Verstraete W. 2006. Biodeposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17: 357-367. https://doi.org/10.1007/s10532-005-9006-x
- Muynck WD, Belie ND, Verstraete W. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
- Tobler DJ, Cuthbert MO, Greswell RB, Riley MS, Renshaw JC, Handley-Sidhu S, et al. 2011. Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochim. Cosmochim. Acta 75: 3290-3301. https://doi.org/10.1016/j.gca.2011.03.023
- Okyay TO, Rodrigues DF. 2014. Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology. Ecol. Eng. 62: 168-174. https://doi.org/10.1016/j.ecoleng.2013.10.024
- Seifan M, Samani AK, Berenjian A. 2016. Induced calcium carbonate precipitation using Bacillus species. Appl. Microbiol. Biotechnol. 100: 9895-9906. https://doi.org/10.1007/s00253-016-7701-7
- Steinberg DM, Bursztyn D. 2010. Response surface methodology in biotechnology. Qual. Eng. 22: 78-87. https://doi.org/10.1080/08982110903510388
- Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, et al. 2014. Atmospheric and room temperature plasma as a new powerful mutagenesis tool. Appl. Microbiol. Biotechnol. 98: 5387-5396. https://doi.org/10.1007/s00253-014-5755-y
- Ramachandran SK, Ramakrishnan V, Bang SS. 2001. Remediation of concrete using microorganisms. Aci Mater. J. 98: 3-9.
- Whiffin VS, Paassen LA, Harkes MP. 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24: 417-423. https://doi.org/10.1080/01490450701436505
- Kalil SJ, Maugeri F, Rodrigues MI. 2000. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 35: 539-550. https://doi.org/10.1016/S0032-9592(99)00101-6
- Mori Y, Enomae T, Isogai A. 2009. Preparation of pure vaterite by simple mechanical mixing of two aqueous salt solutions. Mat. Sci. Eng. 29: 1409-1414. https://doi.org/10.1016/j.msec.2008.11.009
- Kontoyannis CG, Vagenas NV. 2000. Calcium carbonate phase analysis using XRD and FTIR spectroscopy. Analyst 125: 251-255. https://doi.org/10.1039/a908609i
- Liu R, Liang L, Ma J, Ren X, Jing M, Chen K, et al. 2013. An engineering Escherichia coli, mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma[J]. Process Biochem. 48: 1603-1609. https://doi.org/10.1016/j.procbio.2013.07.020
- Hua X, Wang J, Wu Z, Zhang H. 2010. A salt tolerant Enterobacter cloacae, mutant for bioaugmentation of petrolecum- and salt-contaminated soil[J]. Biochem. Eng. J. 49: 201-206. https://doi.org/10.1016/j.bej.2009.12.014
- Gebauer D, Gunawidjaja PN, Ko JY, Bacsik Z, Aziz B, Liu L, et al. 2010. Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew. Chem. Int. Ed. Engl. 49: 8889-8891. https://doi.org/10.1002/anie.201003220
- Andersen FA, Brecevic L. 1991. Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem. Scand. 45:1018-1024. https://doi.org/10.3891/acta.chem.scand.45-1018
- Morita R. 1980. Calcite precipitation by marine bacteria. Geomicrobiol. J. 2: 63-82. https://doi.org/10.1080/01490458009377751
- Chen Y, Cheng JJ, Creamer KS. 2008. Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99: 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057
- Sanchez-Roman M, Rivadeneyra MA, Vasconcelos C, Mckenzie JA. 2010. Biomineralization of carbonate and phosphate by moderately halophilic bacteria. FEMS Microbiol. Ecol. 61: 273-284. https://doi.org/10.1111/j.1574-6941.2007.00336.x
- Yang LQ, Wang SH, Tian YP. 2010. Purification, properties, and application of a novel acid urease from Enterobacter sp. Appl. Biochem. Biotechnol. 160: 303-313. https://doi.org/10.1007/s12010-008-8159-6
- Huang SC, Burne RA, Chen YYM .2014. The pH-dependent expression of the urease operon in Streptococcus salivarius is mediated by cody. Appl. Environ. Microbiol. 80: 5386-5393. https://doi.org/10.1128/AEM.00755-14
- Huang SC, Chen YYM. 2016. Role of vicrkx and glnr in pH-dependent regulation of the Streptococcus salivarius 57.1 urease operon. mSphere 1: e00033-16.
- Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S. 1999. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7: 205-216. https://doi.org/10.1016/S0969-2126(99)80026-4
- Kakelar MM, Ebrahimi S. 2016. Up-scaling application of microbial carbonate precipitation: optimization of urease production using response surface methodology and injection modification. Int. J. Environ. Sci. Technol. 13: 2619-2628. https://doi.org/10.1007/s13762-016-1070-8
- Okwadha GD, Li J. 2010. Optimum conditions for microbial carbonate precipitation. Chemosphere 81: 1143-1148. https://doi.org/10.1016/j.chemosphere.2010.09.066
- Bundur ZB, Kirisits MJ, Ferron RD. 2015. Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 67: 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002
피인용 문헌
- Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges vol.9, pp.11, 2021, https://doi.org/10.3390/microorganisms9112396