Acknowledgement
This study was supported by grants from the National Key Research and Development Project of China (2019YFC0507703).
References
- Zhang W, Xue X, Peng F, You Q, Hao A. 2019. Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 20: e00774. https://doi.org/10.1016/j.gecco.2019.e00774
- Gao QZ, Wan YF, Xu HM, Li Y, Jiangcun WZ, Borjigidai A. 2010. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quatern Int. 226: 143-150. https://doi.org/10.1016/j.quaint.2009.10.035
- Chen Y, Xu T, Veresoglou SD, Hu H, Hao Z, Hu Y, et al. 2017. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biol. Biochem. 110: 12-21. https://doi.org/10.1016/j.soilbio.2017.02.015
- Zhang C, Liu G, Song Z, Wang J, Guo L. 2018. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands. Soil Biol. Biochem. 124: 47-58. https://doi.org/10.1016/j.soilbio.2018.05.026
- Wagg C, Schlaeppi K, Banerjee S, Kuramae E,van der Heijden MGA. 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10: 4841. https://doi.org/10.1038/s41467-019-12798-y
- Mal B, Mahapatra P, Mohanty S. 2014. Effect of diazotrophs and chemical fertilizers on production and economics of okra (Abelmoschus esculentus, L.) cultivars. Am. J. Plant Sci. 5: 168-174. https://doi.org/10.4236/ajps.2014.51022
- Zhou DM, Huang XF, Chaparro JM, Badri DV, Manter DK, Vivanco JM, et al. 2016. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil 401: 259-272. https://doi.org/10.1007/s11104-015-2743-7
- Qin Y, Druzhinina IS, Pan X, Yuan Z. 2016. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol. Adv. 34: 1245-1259. https://doi.org/10.1016/j.biotechadv.2016.08.005
- Li H, Qiu Y, Yao T, Ma Y, Zhang H, Yang X. 2020. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa , Medicago sativa , and Cucumis sativus seedlings. Soil Till Res. 199: 104577. https://doi.org/10.1016/j.still.2020.104577
- Gao J, Luo Y, Wei Y, Huang Y, Zhang H, He W, et al. 2019. Screening of plant growth promoting bacteria (PGPB) from rhizosphere and bulk soil of Caragana microphylla in different habitats and their effects on the growth of Arabidopsis seedlings. Biotechnol. Biotechnol. Equip. 33: 921-930. https://doi.org/10.1080/13102818.2019.1629841
- Berg M, Koskella B. 2018. Nutrient-and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 28: 2487-2492. https://doi.org/10.1016/j.cub.2018.05.085
- Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, et al. 2014. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One 9: e104259. https://doi.org/10.1371/journal.pone.0104259
- Sarkar J, Chakraborty B, Chakraborty U. 2018. Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J. Plant Growth Regul. 37: 1396-1412. https://doi.org/10.1007/s00344-018-9789-8
- Tiepo AN, Hertel MF, Rocha SS, Calzavara AK, Oliveira ALMD, Pimenta JA, et al. 2018. Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria. Plant Physiol. Biochem. 130: 277-288. https://doi.org/10.1016/j.plaphy.2018.07.021
- Wang Z, Tan W, Yang D, Zhang K, Zhao L, Xie Z, et al. 2021. Mitigation of soil salinization and alkalization by bacterium-induced inhibition of evaporation and salt crystallization. Sci. Total Environ. 755: 142511. https://doi.org/10.1016/j.scitotenv.2020.142511
- Vries FTd, Griffiths RI, Knight CG, Nicolitch O, Williams A. 2020. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368: 270-274. https://doi.org/10.1126/science.aaz5192
- Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, et al. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 209: 21-32. https://doi.org/10.1016/j.micres.2018.02.003
- Etesami H, Beattie GA. 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 9: 00148. https://doi.org/10.3389/fmicb.2018.00148
- Molina-Romero D, Baez A, Quintero-Hernandez V, Castaneda M, Fuentes-Ramirez LE, Bustillos MdR, et al. 2017. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLos One 12: e0187913. https://doi.org/10.1371/journal.pone.0187913
- Turan M, Gulluce M, Sahin F. 2012. Effects of plant growth-promoting rhizobacteria on yield, growth, and some physiological characteristics of wheat and barley plants. Commun. Soil Sci. Plan. 43: 1658-1673. https://doi.org/10.1080/00103624.2012.681739
- Wu H, Gu Q, Xie Y, Lou Z, Xue P, Fang L, et al. 2019. Cold-adapted Bacilli isolated from the Qinghai-Tibetan Plateau are able to promote plant growth in extreme environments. Environ. Microbiol. 21: 3505-3526. https://doi.org/10.1111/1462-2920.14722
- Doebereiner J. 1994. Isolation and identification of aerobic nitrogen fixing bacteria, pp134-141. In Alef K (ed.), Methods in applied soil microbiology and biochemistry, Ed. Academic (eds.), Cambridge, UK.
- Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270. https://doi.org/10.1016/S0378-1097(98)00555-2
- Hardy R, Holsten R, Jackson E, Burns R. 1968. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43: 1185-1207. https://doi.org/10.1104/pp.43.8.1185
- Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
- Chrastil J. 1976. Colorimetric estimation of indole-3-acetic acid. Anal. Biochem. 72: 134-138. https://doi.org/10.1016/0003-2697(76)90514-5
- Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, et al. 2012. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Commun. 3: 1926.
- Wang M, Tachibana S, Murai Y, Li L, Lau SYL, Cao M, et al. 2016. Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii. Sci. Rep. 6: 22596. https://doi.org/10.1038/srep22596
- Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plantarum. 118: 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
- Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Galkiewicz JP, Kellogg CA. 2008. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl. Environ. Microbiol. 74: 7828-7831. https://doi.org/10.1128/AEM.01303-08
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- Navarro-Noya YE, Hernandez-Mendoza E, Morales-Jimenez J, Jan-Roblero J, Martinez-Romero E, Hernandez-Rodriguez C. 2012. Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Appl. Soil Ecol. 62: 52-60. https://doi.org/10.1016/j.apsoil.2012.07.011
- Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 6: 00198.
- Shahid M, Hameed S, Zafar M, Tahir M, Ijaz M, Tariq M, et al. 2019. Enterobacter sp. strain Fs-11 adapted to diverse ecological conditions and promoted sunflower achene yield, nutrient uptake, and oil contents. Braz. J. Microbiol. 50: 459-469. https://doi.org/10.1007/s42770-019-00061-x
- Zhu Z, Zhang H, Leng J, Niu H, Chen X, Liu D, et al. 2020. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie Van Leeuwenhoek 113: 1263-1278. https://doi.org/10.1007/s10482-020-01434-1
- Etesami H, Maheshwari DK. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 156: 225-246. https://doi.org/10.1016/j.ecoenv.2018.03.013
- Li H, Singh RK, Singh P, Song Q, Xing Y, Yang L, et al. 2017. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Front. Microbiol. 8: 01268. https://doi.org/10.3389/fmicb.2017.01268
- Khan MS, Gao J, Zhang M, Chen X, Moe TS, Du Y, et al. 2020. Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech. 10: 305.
- Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15: 579-590. https://doi.org/10.1038/nrmicro.2017.87
- Zaheer A, Malik A, Sher A, Qaisrani MM, Mehmood A, Khan SU, et al. 2019. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J. Biol. Sci. 26: 1061-1067. https://doi.org/10.1016/j.sjbs.2019.04.004
- Yadav AN, Sachan SG, Verma P, Saxena AK. 2016. Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J. Exp. Biol. 54: 142-150.
- Pandey A, Yarzabal LA. 2019. Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl. Microbiol. Biotechnol. 103: 643-657. https://doi.org/10.1007/s00253-018-9515-2
- Gomez-Godinez LJ, Fernandez-Valverde SL, Romero JCM, Martinez-Romero E. 2019. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs. Syst. Appl. Microbiol. 42: 517-525. https://doi.org/10.1016/j.syapm.2019.05.003
- Chauhan A, Guleria S, Balgir PP, Walia A, Mahajan R, Mehta P, et al. 2017. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Braz. J. Microbiol. 48: 294-304. https://doi.org/10.1016/j.bjm.2016.12.001
- Agarwal P, Singh PC, Chaudhry V, Shirke PA, Chakrabarty D, Farooqui A, et al. 2019. PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana. J. Plant Physiol. 240: 153010. https://doi.org/10.1016/j.jplph.2019.153010
- Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, et al. 2019. Bacterial IAA-delivery into medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms 7: 403. https://doi.org/10.3390/microorganisms7100403
- Liu J, Tang L, Gao H, Zhang M, Guo C. 2019. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J. Sci. Food Agr. 99: 281-289. https://doi.org/10.1002/jsfa.9185
- Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J. 2009. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in burkholderia species, and its growth-promoting effect on tomato plants. Appl. Environ. Microbiol. 75: 6581-6590. https://doi.org/10.1128/AEM.01240-09
- Jin M, Zhao Q, Zhou Z, Zhu L, Zhang Z, Jiang L. 2020. Draft genome sequence of a potential organic phosphorus-degrading bacterium Brevibacterium frigoritolerans GD44, isolated from radioactive soil in Xinjiang, China. Curr. Microbiol. 77: 2896-2903. https://doi.org/10.1007/s00284-020-02037-9
- Hussein KA, Joo JH. 2017. Stimulation, purification, and chemical characterization of siderophores produced by the rhizospheric bacterial strain Pseudomonas putida. Rhizosphere 4: 16-21. https://doi.org/10.1016/j.rhisph.2017.05.006
- Mishra J, Arora NK. 2018. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl. Soil Ecol. 125: 35-45. https://doi.org/10.1016/j.apsoil.2017.12.004
- Marilyn ST, Felipe RP, Jonathan ML, Gutierrez AY, Christian V, Edwin CR, et al. 2021. Genomic and phenotypic analysis of rock phosphate-solubilizing rhizobacteria. Rhizosphere 17: 100290. https://doi.org/10.1016/j.rhisph.2020.100290
- Vassilev N, Eichler-Lobermann B, Vassileva M. 2012. Stress-tolerant P-solubilizing microorganisms. Appl. Microbiol. Biotechnol. 95: 851-859. https://doi.org/10.1007/s00253-012-4224-8
- Trivedi P, Sa T. 2008. Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr. Microbiol. 56: 140-144. https://doi.org/10.1007/s00284-007-9058-8