Acknowledgement
This research was supported by '2020 Discovering Functional Crops Project' of The Food Industry Promotional Agency of Korea and by the Chung-Ang University Research Scholarship Grants in 2020.
References
- Park JH, Oh SM, Lim SS, Lee YS, Shin HK, Oh YS, et al. 2006. Induction of heme oxygenase-1 mediates the anti-inflammatory effects of the ethanol extract of Rubus coreanus in murine macrophages. Biochem. Biophys. Res. Commun. 351: 146-152. https://doi.org/10.1016/j.bbrc.2006.10.008
- Lee JE, Cho SM, Park E, Lee SM, Kim Y, Auh JH, et al. 2014. Anti-inflammatory effects of Rubus coreanus miquel through inhibition of NF-kappaB and MAP Kinase. Nutr. Res. Pract. 8: 501-508. https://doi.org/10.4162/nrp.2014.8.5.501
- Bhandary B, Lee GH, Marahatta A, Lee HY, Kim SY, So BO, et al. 2012. Water extracts of immature Rubus coreanus regulate lipid metabolism in liver cells. Biol. Pharm. Bull. 35: 1907-1913. https://doi.org/10.1248/bpb.b12-00022
- Lee KH, Jeong ES, Jang G, Na JR, Park S, Kang WS, et al. 2020. Unripe Rubus coreanus miquel extract containing ellagic acid regulates AMPK, SREBP-2, HMGCR, and INSIG-1 signaling and cholesterol metabolism in vitro and in vivo. Nutrients 12: 610. https://doi.org/10.3390/nu12030610
- Do SH, Lee JW, Jeong WI, Chung JY, Park SJ, Hong IH, et al. 2008. Bone-protecting effect of Rubus coreanus by dual regulation of osteoblasts and osteoclasts. Menopause 15: 676-683. https://doi.org/10.1097/gme.0b013e31815bb687
- Kim KJ, Jeong ES, Lee KH, Na JR, Park S, Kim JS, et al. 2020. Unripe Rubus coreanus miquel extract containing ellagic acid promotes lipolysis and thermogenesis in vitro and in vivo. Molecules 25: 5954. https://doi.org/10.3390/molecules25245954
- Kim Y, Lee SM, Kim JH. 2014. Unripe Rubus coreanus miquel suppresses migration and invasion of human prostate cancer cells by reducing matrix metalloproteinase expression. Biosci. Biotechnol. Biochem. 78: 1402-1411. https://doi.org/10.1080/09168451.2014.921550
- Ko SH, Chol SW, Ye SK, Yoo S, Kim HS, Chung MH. 2008. Comparison of anti-oxidant activities of seventy herbs that have been used in Korean traditional medicine. Nutr. Res. Pract. 2: 143-151. https://doi.org/10.4162/nrp.2008.2.3.143
- Davel AP, Brum PC, Rossoni LV. 2014. Isoproterenol induces vascular oxidative stress and endothelial dysfunction via a Gialpha-coupled beta2-adrenoceptor signaling pathway. PLoS One 9: e91877. https://doi.org/10.1371/journal.pone.0091877
- Srivastava S, Chandrasekar B, Gu Y, Luo J, Hamid T, Hill BG, et al. 2007. Downregulation of CuZn-superoxide dismutase contributes to beta-adrenergic receptor-mediated oxidative stress in the heart. Cardiovasc. Res. 74: 445-455. https://doi.org/10.1016/j.cardiores.2007.02.016
- Rathore N, John S, Kale M, Bhatnagar D. 1998. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues. Pharmacol. Res. 38: 297-303. https://doi.org/10.1006/phrs.1998.0365
- Manjula TS, Devi CS. 1993. Effect of aspirin on isoproterenol induced changes in lipid metabolism in rats. Indian J. Med. Res. 98: 30-33.
- Tayeb W, Nakbi A, Cheraief I, Miled A, Hammami M. 2013. Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2,4-dichlorophenoxyacetic herbicide in rat liver. Toxicol. Mech. Methods 23: 449-458. https://doi.org/10.3109/15376516.2013.780275
- Pandey KB, Rizvi SI. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2: 270-278. https://doi.org/10.4161/oxim.2.5.9498
- Kannan MM, Quine SD. 2011. Ellagic acid ameliorates isoproterenol induced oxidative stress: evidence from electrocardiological, biochemical and histological study. Eur. J. Pharmacol. 659: 45-52. https://doi.org/10.1016/j.ejphar.2011.02.037
- Yeager JC, Iams SG. 1981. The hemodynamics of isoproterenol-induced cardiac failure in the rat. Circ. Shock 8: 151-163.
- Upaganlawar A, Gandhi C, Balaraman R. 2009. Effect of green tea and Vitamin E combination in isoproterenol induced myocardial infarction in rats. Plant Foods Hum. Nutr. 64: 75-80. https://doi.org/10.1007/s11130-008-0105-9
- Laine GA, Allen SJ. 1991. Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ. Res. 68: 1713-1721. https://doi.org/10.1161/01.RES.68.6.1713
- Judd JT, Wexler BC. 1974. Myocardial glycoprotein changes with isoproterenol-induced necrosis and repair in the rat. Am. J. Physiol. 226: 597-602. https://doi.org/10.1152/ajplegacy.1974.226.3.597
- Sabeena Farvin KH, Anandan R, Kumar SH, Shiny KS, Sankar TV, Thankappan TK. 2004. Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats. Pharmacol. Res. 50: 231-236. https://doi.org/10.1016/j.phrs.2004.03.004
- Chae HJ, Yim JE, Kim KA, Chyun JH. 2014. Hepatoprotective effects of Rubus coreanus miquel concentrates on liver injuries induced by carbon tetrachloride in rats. Nutr. Res. Pract. 8: 40-45. https://doi.org/10.4162/nrp.2014.8.1.40
- Nardi GM, Farias Januario AG, Freire CG, Megiolaro F, Schneider K, Perazzoli MR, et al. 2016. Anti-inflammatory activity of berry fruits in mice model of inflammation is based on oxidative stress modulation. Pharmacognosy Res. 8: S42-49. https://doi.org/10.4103/0974-8490.178642
- Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D'Arcangelo D, et al. 2019. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed. Res. Int. 2019: 8748253.
- Hasan R, Lasker S, Hasan A, Zerin F, Zamila M, Chowdhury FI, et al. 2020. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways. Sci. Rep. 10: 14459. https://doi.org/10.1038/s41598-020-71449-1
- Marrocco I, Altieri F, Peluso I. 2017. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell. Longev. 2017: 6501046. https://doi.org/10.1155/2017/6501046
- Mohamadin AM, Elberry AA, Mariee AD, Morsy GM, Al-Abbasi FA. 2012. Lycopene attenuates oxidative stress and heart lysosomal damage in isoproterenol induced cardiotoxicity in rats: a biochemical study. Pathophysiology 19: 121-130. https://doi.org/10.1016/j.pathophys.2012.04.005
- Chen W, Liang J, Fu Y, Jin Y, Yan R, Chi J, et al. 2020. Cardioprotection of cortistatin against isoproterenol-induced myocardial injury in rats. Ann. Transl. Med. 8: 309. https://doi.org/10.21037/atm.2020.02.93
- Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, et al. 2005. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc. Res. 65: 230-238. https://doi.org/10.1016/j.cardiores.2004.08.013
- Blasig IE, Blasig R, Lowe H. 1984. Myocardial lipid peroxidation during isoproterenol-induced blood flow reduction in rat myocardium. Biomed. Biochim. Acta 43: S171-174.
- Zhou R, Xu Q, Zheng P, Yan L, Zheng J, Dai G. 2008. Cardioprotective effect of fluvastatin on isoproterenol-induced myocardial infarction in rat. Eur. J. Pharmacol. 586: 244-250. https://doi.org/10.1016/j.ejphar.2008.02.057
- Wang SB, Tian S, Yang F, Yang HG, Yang XY, Du GH. 2009. Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. Eur. J. Pharmacol. 615: 125-132. https://doi.org/10.1016/j.ejphar.2009.04.061
- Yogeeta SK, Hanumantra RB, Gnanapragasam A, Senthilkumar S, Subhashini R, Devaki T. 2006. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid. Basic Clin. Pharmacol. Toxicol. 98: 467-472. https://doi.org/10.1111/j.1742-7843.2006.pto_335.x
- Rajadurai M, Stanely Mainzen Prince P. 2006. Preventive effect of naringin on lipids, lipoproteins and lipid metabolic enzymes in isoproterenol-induced myocardial infarction in Wistar rats. J. Biochem. Mol. Toxicol. 20: 191-197. https://doi.org/10.1002/jbt.20136
- Tosheska Trajkovska K, Topuzovska S. 2017. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatol. J. Cardiol. 18: 149-154.
- Feng CC, Liao PH, Tsai HI, Cheng SM, Yang LY, PadmaViswanadha V, et al. 2018. Tumorous imaginal disc 1 (TID1) inhibits isoproterenol-induced cardiac hypertrophy and apoptosis by regulating c-terminus of hsc70-interacting protein (CHIP) mediated degradation of Galphas. Int. J. Med. Sci. 15: 1537-1546. https://doi.org/10.7150/ijms.24296
- Selvaraj P, Pugalendi KV. 2012. Efficacy of hesperidin on plasma, heart and liver tissue lipids in rats subjected to isoproterenol-induced cardiotoxicity. Exp. Toxicol. Pathol. 64: 449-452. https://doi.org/10.1016/j.etp.2010.10.012
- Devika PT, Stanely Mainzen Prince P. 2008. (-)Epigallocatechin-gallate (EGCG) prevents mitochondrial damage in isoproterenol-induced cardiac toxicity in albino Wistar rats: a transmission electron microscopic and in vitro study. Pharmacol. Res. 57: 351-357. https://doi.org/10.1016/j.phrs.2008.03.008
- Garg S, Malhotra RK, Khan SI, Sarkar S, Susrutha PN, Singh V, et al. 2019. Fisetin attenuates isoproterenol-induced cardiac ischemic injury in vivo by suppressing RAGE/NF-kappaB mediated oxidative stress, apoptosis and inflammation. Phytomedicine 56: 147-155. https://doi.org/10.1016/j.phymed.2018.09.187
- Teng H, Lin Q, Li K, Yuan B, Song H, Peng H, et al. 2017. Hepatoprotective effects of raspberry (Rubus coreanus miq.) seed oil and its major constituents. Food Chem. Toxicol. 110: 418-424. https://doi.org/10.1016/j.fct.2017.09.010
- Yang JW, Choi IS. 2016. Comparison of the phenolic composition and antioxidant activity of Korean black raspberry, Bokbunja, (Rubus coreanus miquel) with those of six other berries. CYTA - J. Food 15: 110-117.