References
- Berg D, Gerlach H. 2018. Recent advances in understanding and managing sepsis. F1000Res. 7: F1000 Faculty Rev-1570.
- Brady J, Horie S, Laffey JG. 2020. Role of the adaptive immune response in sepsis. Intensive Care Med. Exp. 8: 20. https://doi.org/10.1186/s40635-020-00309-z
- Cabrera-Perez J, Condotta SA, Badovinac VP, Griffith TS. 2014. Impact of sepsis on CD4 T cell immunity. J. Leukoc. Biol. 96: 767-777. https://doi.org/10.1189/jlb.5MR0114-067R
- Al Achkar M, Rogers JS, Muszynski MJ. 2012. Pantoea species sepsis associated with sickle cell crisis in a pregnant woman with a history of pica. Am. J. Case Rep. 13: 26-28. https://doi.org/10.12659/AJCR.882588
- de Oliveira TH, Amorin AT, Rezende IS, Santos Barbosa M, Martins HB, Brito AK, et al. 2015. Sepsis induced by Staphylococcus aureus: participation of biomarkers in a murine model. Med. Sci. Monit. 21: 345-355. https://doi.org/10.12659/MSM.892528
- Minasyan H. 2019. Sepsis: mechanisms of bacterial injury to the patient. Scand. J. Trauma Resusc. Emerg. Med. 27: 19. https://doi.org/10.1186/s13049-019-0596-4
- Martin GS. 2012. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert. Rev. Anti Infect. Ther. 10: 701-706. https://doi.org/10.1586/eri.12.50
- Lv Z, Wei H, Li Q, Su X, Liu S, Zhang KY, et al. 2018. Achieving efficient photodynamic therapy under both normoxia and hypoxia using cyclometalated Ru(ii) photosensitizer through type I photochemical process. Chem. Sci. 9: 502-512. https://doi.org/10.1039/C7SC03765A
- Dong X, Fu J, Yin X, Cao S, Li X, Lin L, et al. 2016. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res. 30: 1207-1218. https://doi.org/10.1002/ptr.5631
- Ma W, Liu C, Li J, Hao M, Ji Y, Zeng X. 2020. The effects of aloe emodin-mediated antimicrobial photodynamic therapy on drug-sensitive and resistant Candida albicans. Photochem. Photobiol. Sci. 19: 485-494. https://doi.org/10.1039/C9PP00352E
- Chen Q, Li KT, Tian S, Yu TH, Yu LH, Lin HD, et al. 2018. Photodynamic therapy mediated by Aloe-Emodin inhibited angiogenesis and cell metastasis through activating MAPK signaling pathway on HUVECs. Technol. Cancer Res. Treat. 17: 1533033818785512.
- Zang L, Zhao H, Ji X, Cao W, Zhang Z, Meng P. 2017. Photophysical properties, singlet oxygen generation efficiency and cytotoxic effects of aloe emodin as a blue light photosensitizer for photodynamic therapy in dermatological treatment. Photochem. Photobiol. Sci. 16: 1088-1094. https://doi.org/10.1039/C6PP00453A
- Jiang L, Yi T, Shen Z, Teng Z, Wang J. 2019. Aloe-emodin attenuates Staphylococcus aureus pathogenicity by interfering with the oligomerization of α-toxin. Front. Cell. Infect. Microbiol. 9: 157. https://doi.org/10.3389/fcimb.2019.00157
- Zou J, Shankar NJI, immunity. 2014. Enterococcus faecalis infection activates phosphatidylinositol 3-kinase signaling to block apoptotic cell death in macrophages. Infect. Immun. 82: 5132-5142. https://doi.org/10.1128/IAI.02426-14
- Cabral GRdA, Wang ZT, Sibley LD, DaMatta RA. 2018. Inhibition of nitric oxide production in activated macrophages caused by Toxoplasma gondii infection occurs by distinct mechanisms in different mouse macrophage cell lines. Front. Microbiol. 9: 1936. https://doi.org/10.3389/fmicb.2018.01936
- Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9: 117-128. https://doi.org/10.1038/nrd3013
- Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P T 40: 277-283.
- Qiu J, Niu X, Wang J, Xing Y, Leng B, Dong J, et al. 2012. Capsaicin protects mice from community-associated methicillin-resistant Staphylococcus aureus pneumonia. PLoS One 7: e33032. https://doi.org/10.1371/journal.pone.0033032
- Kong C, Neoh HM, Nathan S. 2016. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins (Basel) 8: 72. https://doi.org/10.3390/toxins8030072
- Romp E, Arakandy V, Fischer J, Wolz C, Siegmund A, Loffler B, et al. 2020. Exotoxins from Staphylococcus aureus activate 5-lipoxygenase and induce leukotriene biosynthesis. Cell. Mol. Life Sci. 77: 3841-3858. https://doi.org/10.1007/s00018-019-03393-x
- Sharma B, Thakur V, Kaur G, Chaudhary GR. 2020. Efficient photodynamic therapy against Gram-positive and Gram-negative bacteria using rose bengal encapsulated in metallocatanionic vesicles in the presence of visible light. ACS Appl. Bio Mater. 12: 8515-8524.
- Hall CW, Mah TF. 2017. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 41: 276-301. https://doi.org/10.1093/femsre/fux010
- Delle-Bovi RJ, Smits A, Pylypiw HM. 2011. Rapid method for the determination of total monosaccharide in Enterobacter cloacae strains using fourier transform infrared spectroscopy. Am. J. Anal. Chem. 2: 212-216. https://doi.org/10.4236/ajac.2011.22025
- Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4: e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
- Sobisch L-Y, Rogowski KM, Fuchs J, Schmieder W, Vaishampayan A, Oles P, et al. 2019. Biofilm forming antibiotic resistant gram-positive pathogens isolated from surfaces on the international space station. Front. Microbiol. 10: 543. https://doi.org/10.3389/fmicb.2019.00543
- Catao MHCdV, Batista ALA. 2020. In vitro evaluation of the antibacterial effect of photodynamic therapy with methylene blue. Pesqui. Bras. Odontopediatria Clin. Integr. 20. doi.org/10.1590/pboci.2020.073.
- Otieno W, Liu C, Deng H, Li J, Zeng X, Ji Y. 2020. Hypocrellin B-mediated photodynamic inactivation of Gram-positive antibiotic-resistant bacteria: an in vitro study. Photobiomodul. Photomed. Laser Surg. 38: 36-42. https://doi.org/10.1089/photob.2019.4656
- Lambden S. 2019. Bench to bedside review: therapeutic modulation of nitric oxide in sepsis-an update. Intensive Care Med. Exp. 7: 64. https://doi.org/10.1186/s40635-019-0274-x
- Hullmann G, Azfer M, Hensley J, Bergese A, Lefer JJAJoB. 2015. Role of IL-1B in TLR4-mediated MCP-1expression: renal sepsis. Am. J. Biomed. 3: 22-31.
- Franco DM, Arevalo-Rodriguez I, i Figuls MR, Oleas NGM, Nuvials X, Zamora JJCDoSR. 2019. Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cocharne Database Syst. Rev. 4: CD011811.
- Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. 2016. Sepsis and septic shock. Nat. Rev. Dis. Primers 2: 16045. https://doi.org/10.1038/nrdp.2016.45
- Huang XQ, Qiu JK, Wang CH, Pan L, Xu JK, Pan XH, et al. 2020. Sepsis secondary to multifocal Enterococcusfaecium infection: a case report. Medicine 99: e19811. https://doi.org/10.1097/MD.0000000000019811
- van der Poll T, Opal SM. 2009. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374: 1543-1556. https://doi.org/10.1016/S0140-6736(09)61114-4
- Van Tyne D, Martin MJ, Gilmore MS. 2013. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins (Basel) 5: 895-911. https://doi.org/10.3390/toxins5050895
- Divyakolu S, Chikkala R, Ratnakar KS, Sritharan V. 2019. Hemolysins of Staphylococcus aureus-An update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Adv. Infect. Dis. 9: 80-104. https://doi.org/10.4236/aid.2019.92007
- Nishimoto AT, Rosch JW, Tuomanen EI. 2020. Pneumolysin: pathogenesis and therapeutic target. Front. Microbiol. 11: 1543. https://doi.org/10.3389/fmicb.2020.01543
Cited by
- Antimicrobial Effect of Phytochemicals from Edible Plants vol.9, pp.11, 2021, https://doi.org/10.3390/pr9112089