과제정보
This work was supported by the National Science Foundation of China (Grant No. 31970038), the Science Public Welfare Fund Projects of Zhejiang Province (Grant No. 2017C32050), and the Key Research and Development Projects of Zhejiang Province (Grant No. 2020C02030).
참고문헌
- Cai D, Rao Y, Zhan Y, Wang Q, Chen S. 2019. Engineering bacillus for efficient production of heterologous protein: current progress, challenge and prospect. J. Appl. Microbiol. 126: 1632-1642. https://doi.org/10.1111/jam.14192
- Nicholson WL. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59: 410-416. https://doi.org/10.1007/s00018-002-8433-7
- Abriouel H, Franz CMAP, Ben ON, Galvez A. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
- Jezewska-Frackowiak J, Seroczynska K, Banaszczyk J, Jedrzejczak G, Zylicz-Stachula A, Skowron PM. 2018. The promises and risks of probiotic Bacillus species. Acta Biochim. Pol. 65: 509-519.
- Lopes R, Tsui S, Goncalves PJRO, de Queiroz MV. 2018. A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J. Microbiol. Biotechnol. 34: 94. https://doi.org/10.1007/s11274-018-2479-7
- Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. 2020. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128: 1583-1594. https://doi.org/10.1111/jam.14506
- Radhakrishnan R, Hashem A, Abd Allah EF. 2017. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8: 667. https://doi.org/10.3389/fphys.2017.00667
- Miljakovi D, Marinkovi J, Baleevi-Tubi S. 2020. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8: 1037. https://doi.org/10.3390/microorganisms8071037
- Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17: 478-486. https://doi.org/10.1016/j.tplants.2012.04.001
- Jin H, Dong D, Yang Q. 2016. Salt-responsive transcriptome profiling of Suaeda glauca via RNA sequencing. PLoS One 11: e0150504. https://doi.org/10.1371/journal.pone.0150504
- Cui LJ, Pan X, Li W, Zhang XD, Liu GF, Song YB, et al. 2019. Phragmites australis meets Suaeda salsa on the "red beach": effects of an ecosystem engineer on salt-marsh litter decomposition. Sci. Total Environ. 693: 133477. https://doi.org/10.1016/j.scitotenv.2019.07.283
- Duan HM, Ma YH, Liu RR, Li Q, Yang Y, Song J. 2018. Effect of combined waterlogging and salinity stresses on euhalophyte Suaeda glauca. Plant Physiol. Biochem. 127: 231-237. https://doi.org/10.1016/j.plaphy.2018.03.030
- Zhang HG, Yang BR, Chen AH, Liang HX. 2017. Soil microbial diversity of marshes covered by Suaeda salsa and Spartina alternifora in Yancheng Wetland. Nat. Environ. Pollut. Technol. 16: 1113-1119.
- Xu ZK, Shao TY, Lv ZX, Yue Y, Liu AH, Long XH, et al. 2020. The mechanisms of improving coastal saline soils by planting rice. Sci. Total Environ. 703: 135529. https://doi.org/10.1016/j.scitotenv.2019.135529
- Rath M, Mitchell TR, Gold SE. 2018. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol. Res. 208: 76-84. https://doi.org/10.1016/j.micres.2017.12.014
- Nishijima T, Toyota K, Mochizuki M. 2005. Predominant culturable Bacillus species in Japanese arable soils and their potential as biocontrol agents. Microbes Environ. 20: 61-68. https://doi.org/10.1264/jsme2.20.61
- Sha YX, Zeng QC, Sui ST. 2020. Screening and application of Bacillus strains isolated from nonrhizospheric rice soil for the biocontrol of rice blast. Plant Pathol. 36: 231-243. https://doi.org/10.5423/PPJ.OA.02.2020.0028
- Ki JS, Zhang W, Qian PY. 2009. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J. Microbiol. Methods 77: 48-57. https://doi.org/10.1016/j.mimet.2009.01.003
- Jing CL, Xu ZC, Zou P, Tang Q, Li,YQ, You XW, et al. 2019. Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta, China. Appl. Soil Ecol. 134: 1-7. https://doi.org/10.1016/j.apsoil.2018.10.009
- Khan AG. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18: 355-364. https://doi.org/10.1016/j.jtemb.2005.02.006
- Fayez R. Salek-Gilani S. 2018. The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soil after agricultural abandonment. Appl. Soil Ecol. 126: 140-147. https://doi.org/10.1016/j.apsoil.2018.02.022
- Shen Q, Hao YQ, Xu XH, Xu YD, Yang JY, Chu WY, et al. 2020. Analysis of rhizosphere bacterial diversity in Suaeda glauca Bunge based on high-throughput sequencing. J. Zhejiang Sci-Tech University 43: 671-677.
- Lopez-Angulo J, de la Cruz M, Chacon-Labella J, Illuminati A, Matesanz S, Pescador DS, et al. 2020. The role of root community attributes in predicting soil fungal and bacterial community patterns. New Phytol. 228: 1070-1082. https://doi.org/10.1111/nph.16754
- Yamamoto K, Shiwa Y, Ishige T, Sakamoto H, Tanaka K, Uchino M, et al. 2018. Bacterial diversity associated with the rhizosphere and endosphere of two halophytes: Glaux maritima and Salicornia europaea. Front. Microbiol. 9: 2878. https://doi.org/10.3389/fmicb.2018.02878
- Bouizgarne B. 2013. Bacteria for plant growth promotion and disease management. pp. 15-47. In Maheshwari D. (ed.), Bacteria in Agrobiology: Disease Management, 2nd Ed. Springer Heidelberg New York Dordrecht, London.
- Mukhtar S, Ishaq A, Hassan S, Mehnaz S, Mirza MS, Malik KA. 2017. Comparison of microbial communities associated with halophyte (Salsola stocksii) and non-halophyte (Triticum aestivum) using culture-independent approaches. Pol. J. Microbiol. 66: 353-364. https://doi.org/10.5604/01.3001.0010.4866
- Shi YW, Lou K, Li C, Wang L, Zhao ZY, Zhao S, et al. 2015. Illumina based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica. J. Microbiol. 53: 678-685. https://doi.org/10.1007/s12275-015-5080-x
- Tian XY, Zhang CS. 2017. Illumina-based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte Messerschmidia sibirica. Front. Microbiol. 8: 2288. https://doi.org/10.3389/fmicb.2017.02288
- Brack C, Mikolasch A, Schlueter R, Otto A, Becher D, Wegner U, et al. 2015. Antibacterial metabolites and bacteriolytic enzymes produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus. Mar. Biotechnol. 17: 290-304. https://doi.org/10.1007/s10126-015-9614-3
- Schinke C, Martins T, Queiroz SCN, Melo IS, Reyes FGR. 2017. Antibacterial compounds from marine bacteria, 2010-2015. J. Nat. Prod. 80: 1215-1228. https://doi.org/10.1021/acs.jnatprod.6b00235
- Fira D, Dimkic I, Beric T, Lozo J, Stankovic S. 2018. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285: 44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
- Bais HP, Fall R, Vivanco JM. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by bioflm formation and surfactin production. Plant Physiol. 134: 307-319. https://doi.org/10.1104/pp.103.028712
- Kupper KC, Correa FE, Azevedo FA, Silva AC. 2012. Bacillus subtilis to biological control of postbloom fruit drop caused by Colletotrichum acutatum under feld conditions. Sci. Hortic. 134: 139-143. https://doi.org/10.1016/j.scienta.2011.11.019
- Kupper KC, Moretto RK, Fujimoto A. 2020. Production of antifungal compounds by Bacillus spp. isolates and its capacity for controlling citrus black spot under field conditions. World J. Microbiol. Biotechnol. 36: 1. https://doi.org/10.1007/s11274-019-2775-x
- Asari S, S Matzen, Petersen MA, Bejai S, Meijer J, Sessitsch A. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol. Ecol. 92: iw070.
- Leelasuphakul W, Hemmanee P, Chuenchitt S. 2008. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (penicillium digitatum sacc.) of citrus fruit. Postharvest Biol. Technol. 48: 113-121. https://doi.org/10.1016/j.postharvbio.2007.09.024
- Zhu L, Liu N, Wang H, Zhang Z, Jiang L, Huang H. 2019. Draft genome sequence of broad-spectrum antifungal-producing Bacillus velezensis C4341 isolated from a saline-alkali soil sample in China. J. Glob. Antbimicrob. Resist. 16: 291-293. https://doi.org/10.1016/j.jgar.2018.12.019
- Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK. 2020. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz. J. Microbiol. 51: 229-241. https://doi.org/10.1007/s42770-019-00172-5
- Singh RK, Singh P, Li HB, Song QQ, Guo DJ, Solanki MK, et al. 2020. Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biol. 20: 220. https://doi.org/10.1186/s12870-020-02400-9
- Hong Y, Ma Y, Wu L, Maki M, Qin W, Chen S. 2012. Characterization and analysis of nifH genes from Paenibacillus sabinae T27. Microbiol. Res. 167: 596-60. https://doi.org/10.1016/j.micres.2012.05.003
- Szymanska S, Plociniczak T, Piotrowska-Seget Z, Hrynkiewicz K. 2016. Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L.-community structure and metabolic potential. Microbiol. Res. 192: 37-51. https://doi.org/10.1016/j.micres.2016.05.012