DOI QR코드

DOI QR Code

Aureivirga callyspongiae sp. nov., Isolated from Marine Sponge Callyspongia elegans

  • Park, So Hyun (Research Institute for Basic Sciences) ;
  • Kim, Ji Young (Research Institute for Basic Sciences) ;
  • Heo, Moon Soo (Marine Pathogenic Microbes and Aquatic Disease Control Lab., Department of Aquatic Life Medicine, Jeju National University)
  • Received : 2021.04.27
  • Accepted : 2021.05.11
  • Published : 2021.09.28

Abstract

A Gram-negative, aerobic, motile by gliding, and rod-shaped marine bacterium, designated CE67T was isolated from the marine sponge Callyspongia elegans on Biyang-do in Jeju Island. The CE67T strain grew optimally at 25℃, pH 7.5, and in the presence of 2-3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain CE67T was related to the genus Aureivirga and had the highest 16S rRNA gene sequence similarity to the Aureivirga marina VIII.04T type strain (96.3%). The primary fatty acids (>10%) of strain CE67T were iso-C15:0 (35.3%) and iso-C17:0 3OH (21.8%). The polar lipid profile of strain CE67T contained phosphatidylethanolamine, unidentified aminolipids, and unidentified lipids. The predominant menaquinone was MK-6. The DNA G+C content was 29.1 mol%. Based on the polyphasic taxonomic analysis, strain CE67T was determined to be a representative novel species of the genus Aureivirga for which we propose the name Aureivirga callyspongiae sp. nov., whose strain type is CE67T (=KCTC 42847T=JCM 34566T).

Keywords

Acknowledgement

This research was supported by Basic Science Research Program to Research Institute for Basic Sciences(RIBS) of Jeju National University through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2019R1A6A1A10072987).

References

  1. Hentschel U, Usher KM, Taylor MW. 2006. Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 55: 167-177. https://doi.org/10.1111/j.1574-6941.2005.00046.x
  2. Thomas TR, Kavlekar DP, LokaBharathi PA. 2010. Marine drugs from sponge-microbe association-A review. Mar. Drugs 8: 1417-1468. https://doi.org/10.3390/md8041417
  3. Haber M, Shefer S, Giordano A, Orlando P, Gambacorta A, Ilan M. 2013. Aureivirga marina gen. nov., sp. nov., a marine bacterium isolated from the Mediterranean sponge Axinella verrucosa. Int. J. Syst. Evol. Microbiol. 63: 1089-1095. https://doi.org/10.1099/ijs.0.043257-0
  4. Jung YT, Kim JH, Kang SJ, Oh TK, Yoon JH. 2012. Namhaeicola litoreus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Int. J. Syst. Evol. Microbiol. 62: 2163-2168. https://doi.org/10.1099/ijs.0.036046-0
  5. Kim JH, Kim KY, Hahm YT, Kim BS, Chun J, Cha CJ. 2008. Actibacter sediminis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 58: 139-143. https://doi.org/10.1099/ijs.0.65346-0
  6. Yang SJ, Choo YJ, Cho JC. 2007. Lutimonas vermicola gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine polychaete Periserrula leucophryna. Int. J. Syst. Evol. Microbiol. 57: 1679-1684. https://doi.org/10.1099/ijs.0.65060-0
  7. Yoon JH, Kang SJ, Jung YT, Oh TK. 2008. Aestuariicola saemankumensis gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 58: 2126-2131. https://doi.org/10.1099/ijs.0.65717-0
  8. Wilson K. 1987. Preparation of genomic DNA from bacteria In: Current protocols in Molecular Biology (Ausubel FM, Brent RE, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, eds.). New York.
  9. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  10. Yoon SH, Ha SM, Kwon SJ, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  12. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  13. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  14. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum-likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
  15. Kluge AG, Farris FS. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32. https://doi.org/10.2307/2412407
  16. Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
  17. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0. for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  18. Felsenstein J. 2016. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  19. Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In Munro HN, editor, Mammalian Protein Metabolism, pp. 21-132, Academic Press, New York.
  20. Yoon SH, Lim JM, Kwon SJ, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
  21. Bowman JP. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int. J. Syst. Evol. Microbiol. 50: 1861-1868. https://doi.org/10.1099/00207713-50-5-1861
  22. ZoBell CE. 1941. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Mar. Res. 4: 42-75.
  23. Cowan ST, Steel KJ. 1965. Manual for the Identification of Medical Bacteria. Cambridge University Press: London.
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods. 2: 233-241. https://doi.org/10.1016/0167-7012(84)90018-6
  25. Komagata K, Suzuki K. 1987. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol. 19: 161-207. https://doi.org/10.1016/S0580-9517(08)70410-0
  26. Tamaoka J, Komagata K. 1984. Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25: 125-128. https://doi.org/10.1016/0378-1097(84)90059-4
  27. Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101: MIDI Inc.
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, et al. 1987. International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464. https://doi.org/10.1099/00207713-37-4-463