과제정보
This research was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202102109).
참고문헌
- Knutsen SH, Myslabodski DE, Larsen B, Usov AI. 1994. A modified system of nomenclature for red algal galactans. Botanica Marina 37: 163-170. https://doi.org/10.1515/botm.1994.37.2.163
- Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
- Duckworth M, Yaphe W. 1971. Structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
- Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908-912. https://doi.org/10.1038/nature08937
- Park SH, Lee CR, Hong SK. 2020. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl. Microbiol. Biotechnol. 104: 2815-2832. https://doi.org/10.1007/s00253-020-10412-6
- Wang W, Liu P, Hao C, Wu L, Wan W, Mao X. 2017. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways. Sci. Rep. 7: 44252. https://doi.org/10.1038/srep44252
- Kang DR, Yoon GY, Cho J, Lee SJ, Lee SJ, Park HJ, et al. 2017. Neoagarooligosaccharides prevent septic shock by modulating A20-and cyclooxygenase-2-mediated interleukin-10 secretion in a septic-shock mouse model. Biochem. Biophys Res. Commun. 486: 998-1004. https://doi.org/10.1016/j.bbrc.2017.03.152
- Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK. 2017. Antiobesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Mar. Drugs 15: 90-102. https://doi.org/10.3390/md15040090
- Lee MH, Jang JH, Yoon GY, Lee SJ, Lee MG, Kang TH, et al. 2017. Neoagarohexaose-mediated activation of dendritic cells via Toll-like receptor 4 leads to stimulation of natural killer cells and enhancement of antitumor immunity. BMB Rep. 50: 263-268. https://doi.org/10.5483/BMBRep.2017.50.5.014
- Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, et al. 2013. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol. 97: 2961-2970. https://doi.org/10.1007/s00253-012-4184-z
- Yun EJ, Yu S, Kim KH. 2017. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl. Microbiol. Biotechnol. 101: 5581-5589. https://doi.org/10.1007/s00253-017-8383-5
- Minegishi H, Shimane Y, Echigo A, Ohta Y, Hatada Y, Kamekura M, et al. 2013. Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A. Extremophiles 17: 931-939. https://doi.org/10.1007/s00792-013-0575-z
- Lee YR, Jung S, Chi WJ, Bae CH, Jeong BC, Hong SK, et al. 2018. Biochemical characterization of a novel GH86 β-agarase producing neoagarohexaose from Gayadomonas joobiniege G7. J. Microbiol. Biotechnol. 28: 284-292. https://doi.org/10.4014/jmb.1710.10011
- Han Z, Zhang Y, Yang J. 2019. Biochemical characterization of a new β-agarase from Cellulophaga algicola. Int. J. Mol. Sci. 20: 2143-2157. https://doi.org/10.3390/ijms20092143
- Jung S, Jeong BC, Hong SK, Lee CR. 2017. Cloning, expression, and biochemical characterization of a novel acidic GH16 β-agarase, AgaJ11, from Gayadomonas joobiniege G7. Appl. Biochem. Biotechnol. 181: 961-971. https://doi.org/10.1007/s12010-016-2262-x
- Chen X, Lin H, Jin M, Zeng R, Lin M. 2019. Characterization of a novel alkaline β-agarase and its hydrolysates of agar. Food Chem. 295: 311-319. https://doi.org/10.1016/j.foodchem.2019.05.132
- Kim DS, Chi W-J, Hong S-K. 2019. Molecular characterization of an endo-β-1,4-glucanase, CelAJ93, from the recently isolated marine bacterium, Cellulophaga sp. J9-3. Appl. Sci. 9: 4061-4073. https://doi.org/10.3390/app9194061
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759. https://doi.org/10.1007/s00253-011-3347-7
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang A, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. 2018. Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. N. Biotechnol. 40: 261-267. https://doi.org/10.1016/j.nbt.2017.09.006
- Jung S, Lee CR, Chi WJ, Bae CH, Hong SK. 2017. Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Appl. Microbiol. Biotechnol. 101: 1965-1974. https://doi.org/10.1007/s00253-016-7951-4
- Ramos KRM, Valdehuesa KNG, Banares AB, Nisola GM, Lee WK, Chung WJ. 2020. Overexpression and characterization of a novel GH16 β-agarase (Aga1) from Cellulophaga omnivescoria W5C. Biotechnol. Lett. 42: 2231-2238. https://doi.org/10.1007/s10529-020-02933-x