DOI QR코드

DOI QR Code

해양미생물 Cellulophga sp. J9-3이 생산하는 베타-아가레이즈의 분리 및 생화학적 특성

Purification and Biochemical Characterization of β-agarase Produced by Marine Microorganism Cellulophga sp. J9-3

  • 김다솜 (국립생물자원관 미생물자원과) ;
  • 김종희 (서일대학교 영양학과) ;
  • 지원재 (국립생물자원관 미생물자원과)
  • Kim, Da Som (Microorganism Resources Division, National Institute of Biological Resource) ;
  • Kim, Jong-Hee (Department of Food and Nutrition, Seoil University) ;
  • Chi, Won-Jae (Microorganism Resources Division, National Institute of Biological Resource)
  • 투고 : 2021.05.23
  • 심사 : 2021.07.07
  • 발행 : 2021.09.28

초록

Cellulophga sp. J9-3은 셀룰로스 분해능력을 갖으며, Flavobacteriaceae 과에 속하는 그람-음성 호기성 해양 세균이다. 또한, J9-3 균주는 고체 및 액체 배지에서 한천을 가수 분해 할 수 있으며, 배지에 첨가한 아가로스(agarose)에 의해 아가레이즈(agarase)의 생산이 현저하게 유도되는 특성을 보였다. Cellulophga sp. J9-3의 세포 배양액으로부터, 황산암모늄 침전 및 3 단계의 컬럼 크로마토그래피를 연속적으로 수행하여, 한 개의 agarase 단백질, AgaJ93을 순수하게 정제하였다. 정제된 AgaJ93은 아가로스에 대한 분해 활성이 가장 강하였으며, starch에 대해서도 아가로스 대비 약 22% 정도의 분해 활성을 나타냈다. AgaJ93은 아가로스를 분해하여 사이즈가 큰 올리고당 중간체를 경유하여, 최종산물로 네오아가로테트라오스와 네오아가로헥사오스까지 분해함을 확인하였으며, 이는 AgaJ93이 endo-type β-아가레이즈 임을 의미한다. AgaJ93은 pH 7.0, 35℃에서 최대 활성을 나타냈고, Co2+ 이온에 의해 6배 이상의 활성증가를 보였다. AgaJ93의 N-terminal sequence 분석 결과, AgaJ93은 Cellulophaga sp. W5C의 내열성 endo-type β-아가레이즈 Aga2와 82%의 상동성을 보였으나, 두 효소의 생화학적 특성이 달랐다. 따라서, AgaJ93은 기존에 보고된 β-아가레이즈 들과는 다른 신규의 아가레이즈 일 것으로 예상된다.

Cellulophga sp. J9-3, is a gram-negative, aerobic marine bacterium belonging to the family Flavobacteriaceae. In addition to cellulose degradability, the J9-3 strain is also capable of hydrolyzing agar in the solid and liquid medium, and the production of agarase in the presence of agarose can be remarkably induced by the bacterium. From the cell culture broth of Cellulophga sp. J9-3, ammonium sulfate precipitation and three kinds of column chromatography were successively performed to purify a specific agarase protein, the AgaJ93. Purified AgaJ93 showed the strongest hydrolyzing activity towards agarose (approximately 22%), and even displayed activity towards starch. AgaJ93 hydrolyzed agarose into neoagarotetraose and neoagarohexaose via various oligosaccharide intermediates, indicating that AgaJ93 is an endo-type β-agarase. AgaJ93 showed maximum activity at a pH of 7.0 and temperature of 35 ℃. Its activity increased by more than six times in the presence of Co2+ ions. The N-terminal sequence of AgaJ93 showed 82% homology with the heat-resistant endo-type β-agarase Aga2 of Cellulophaga sp. W5C. However, the biochemical properties of the two enzymes were different. Therefore, AgaJ93 is expected to be a novel agarose, different from the previously reported β-agarases.

키워드

과제정보

This research was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202102109).

참고문헌

  1. Knutsen SH, Myslabodski DE, Larsen B, Usov AI. 1994. A modified system of nomenclature for red algal galactans. Botanica Marina 37: 163-170. https://doi.org/10.1515/botm.1994.37.2.163
  2. Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
  3. Duckworth M, Yaphe W. 1971. Structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  4. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908-912. https://doi.org/10.1038/nature08937
  5. Park SH, Lee CR, Hong SK. 2020. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl. Microbiol. Biotechnol. 104: 2815-2832. https://doi.org/10.1007/s00253-020-10412-6
  6. Wang W, Liu P, Hao C, Wu L, Wan W, Mao X. 2017. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways. Sci. Rep. 7: 44252. https://doi.org/10.1038/srep44252
  7. Kang DR, Yoon GY, Cho J, Lee SJ, Lee SJ, Park HJ, et al. 2017. Neoagarooligosaccharides prevent septic shock by modulating A20-and cyclooxygenase-2-mediated interleukin-10 secretion in a septic-shock mouse model. Biochem. Biophys Res. Commun. 486: 998-1004. https://doi.org/10.1016/j.bbrc.2017.03.152
  8. Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK. 2017. Antiobesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Mar. Drugs 15: 90-102. https://doi.org/10.3390/md15040090
  9. Lee MH, Jang JH, Yoon GY, Lee SJ, Lee MG, Kang TH, et al. 2017. Neoagarohexaose-mediated activation of dendritic cells via Toll-like receptor 4 leads to stimulation of natural killer cells and enhancement of antitumor immunity. BMB Rep. 50: 263-268. https://doi.org/10.5483/BMBRep.2017.50.5.014
  10. Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, et al. 2013. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol. 97: 2961-2970. https://doi.org/10.1007/s00253-012-4184-z
  11. Yun EJ, Yu S, Kim KH. 2017. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl. Microbiol. Biotechnol. 101: 5581-5589. https://doi.org/10.1007/s00253-017-8383-5
  12. Minegishi H, Shimane Y, Echigo A, Ohta Y, Hatada Y, Kamekura M, et al. 2013. Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A. Extremophiles 17: 931-939. https://doi.org/10.1007/s00792-013-0575-z
  13. Lee YR, Jung S, Chi WJ, Bae CH, Jeong BC, Hong SK, et al. 2018. Biochemical characterization of a novel GH86 β-agarase producing neoagarohexaose from Gayadomonas joobiniege G7. J. Microbiol. Biotechnol. 28: 284-292. https://doi.org/10.4014/jmb.1710.10011
  14. Han Z, Zhang Y, Yang J. 2019. Biochemical characterization of a new β-agarase from Cellulophaga algicola. Int. J. Mol. Sci. 20: 2143-2157. https://doi.org/10.3390/ijms20092143
  15. Jung S, Jeong BC, Hong SK, Lee CR. 2017. Cloning, expression, and biochemical characterization of a novel acidic GH16 β-agarase, AgaJ11, from Gayadomonas joobiniege G7. Appl. Biochem. Biotechnol. 181: 961-971. https://doi.org/10.1007/s12010-016-2262-x
  16. Chen X, Lin H, Jin M, Zeng R, Lin M. 2019. Characterization of a novel alkaline β-agarase and its hydrolysates of agar. Food Chem. 295: 311-319. https://doi.org/10.1016/j.foodchem.2019.05.132
  17. Kim DS, Chi W-J, Hong S-K. 2019. Molecular characterization of an endo-β-1,4-glucanase, CelAJ93, from the recently isolated marine bacterium, Cellulophaga sp. J9-3. Appl. Sci. 9: 4061-4073. https://doi.org/10.3390/app9194061
  18. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  19. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  20. Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759. https://doi.org/10.1007/s00253-011-3347-7
  21. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang A, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  22. Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. 2018. Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. N. Biotechnol. 40: 261-267. https://doi.org/10.1016/j.nbt.2017.09.006
  23. Jung S, Lee CR, Chi WJ, Bae CH, Hong SK. 2017. Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Appl. Microbiol. Biotechnol. 101: 1965-1974. https://doi.org/10.1007/s00253-016-7951-4
  24. Ramos KRM, Valdehuesa KNG, Banares AB, Nisola GM, Lee WK, Chung WJ. 2020. Overexpression and characterization of a novel GH16 β-agarase (Aga1) from Cellulophaga omnivescoria W5C. Biotechnol. Lett. 42: 2231-2238. https://doi.org/10.1007/s10529-020-02933-x