DOI QR코드

DOI QR Code

Aerodynamic characteristics of tall buildings with porous double-skin façades: State of the art and future perspectives

  • Skvorc, Petar (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb) ;
  • Kozmar, Hrvoje (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb)
  • Received : 2020.06.15
  • Accepted : 2021.09.23
  • Published : 2021.09.25

Abstract

Double-skin façades (DSFs) have been increasingly implemented on tall buildings with the goal of improving building energy efficiency, natural ventilation and visual appearance. It is commonly known that wind and earthquakes represent major environmental load types impacting tall buildings. However, at this point, the aerodynamic characteristics of tall buildings equipped with porous façades are still relatively unknown, although it may be expected that the addition of porous outer skins will substantially affect the overall building aerodynamics. The scope of the present study is therefore to carefully review all the relevant parameters playing an important role in the aerodynamic characteristics of tall buildings with porous façades. Fluid flow and turbulence through porous surfaces were reviewed first with an emphasis on the wake and pressure drop behind perforated plates to analyze the phenomena of fundamental fluid mechanics relevant for porous surfaces. As the inflow characteristics predominantly dictate the aerodynamic characteristics of tall buildings, it is therefore useful to review major wind types, including the atmospheric boundary layer (ABL) and strong local winds, which have previously proved to cause major structural damage and failure. In order to be able to properly assess the aerodynamic loading of tall buildings with porous façades, it is necessary to understand the aerodynamic features of tall buildings with smooth surfaces. For this reason, the aerodynamic performance of smooth tall buildings was reviewed, as were the design features commonly adopted to mitigate adverse wind effects. The existing and rather sparse current knowledge of the aerodynamic characteristics of porous DSFs of high- and low-rise buildings is outlined. Based on the provided information, it is clear that a substantial amount of knowledge still needs to be acquired in the future in regard to various aerodynamic features of tall buildings with porous DSFs, particularly concerning wind loads, building energy efficiency, pedestrian wind comfort, renewable energy aspects, air pollution dispersion and dilution. It is expected that the optimal approach to advancing this topic is in combining field measurements, laboratory experiments and computational modeling.

Keywords

Acknowledgement

The authors gratefully acknowledge funding from the Croatian Science Foundation IP-2016-06-2017 (WESLO). We are also grateful to Professor Gianni Bartoli and Dr. Andrea Giachetti, Inter-University Research Centre on Building Aerodynamics and Wind Engineering (CRIACIV), Italy, and Professor Francesco Ricciardelli, University of Campania Luigi Vanvitelli, Italy, for their helpful discussions.

References

  1. Abdelaziz, K.M., Alipour, A. and Hobeck, J.D. (2021), "A smart facade system controller for optimized wind-induced vibration mitigation in tall buildings", J. Wind Eng. Ind. Aerod., 212, 104601. https://doi.org/10.1016/j.jweia.2021.104601.
  2. Ahmad, S., Shaikh, Z., Nor, M., Arif, H., Mohammad, A.F., Sukri, M. and Ali, M. (2020), "Numerical simulation of the effects of secondary roughness in the form of extension to arrays of terraced houses on pedestrian wind", Sci. Technol. Built Environ., 26(7), 1-13. https://doi.org/10.1080/23744731.2020.1735860.
  3. Allori, D. (2012), Mitigation of Cross Wind Effects on Road Vehicles by Porous Screens, Ph.D. Dissertation, University of Braunschweig - Institute of Technology, Germany, and University of Florence, Italy.
  4. Allori, D., Bartoli, G. and Mannini, C. (2013), "Wind tunnel tests on macro-porous structural elements: A scaling procedure", J Wind Eng., 123, 291-299. https://doi.org/10.1016/j.jweia.2013.09.011.
  5. Antico, P.L., Chou, S.C. and Mourao, C. (2017), "Zonda downslope winds in the central Andes of South America in a 20-year climate simulation with the Eta model", Theoret. Appl. Climatology, 128(1-2), 291-299. https://doi.org/10.1007/s00704-015-1709-2.
  6. ASCE-7-10, (2010), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers.
  7. Baines, W.D. (1965), "Effects of velocity distribution on wind loads and flow patterns on buildings", Proc. Conf. Wind Effects Buildings Structures. Teddington, England. 198-225.
  8. Barlow, J.F. (2014), "Progress in observing and modelling the urban boundary layer", Urban Climate, 10(P2), 216-240. https://doi.org/10.1016/j.uclim.2014.03.011.
  9. Baskaran, A. (1992), Review of Design Guidelines for Pressure Equalized Rainscreen Walls, National Research Council Canada, Internal Report No. 629.
  10. Bayazit, Y., Sparrow, E.M. and Joseph, D.D. (2014), "Perforated plates for fluid management: Plate geometry effects and flow regimes", Int. J. Thermal Sci., 85, 104-111. https://doi.org/10.1016/j.ijthermalsci.2014.06.002.
  11. Belloli, M., Rocchi, D., Rosa, L. and Zasso, A. (2012), "Wind tunnel studies on the effects of porous elements on the aerodynamic behavior of civil structures", The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7), 1132-1141.
  12. Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86. https://doi.org/10.1016/j.jweia.2014.01.004.
  13. Bornstein, R. (1987), "Mean diurnal circulation and thermodynamic evolution of urban boundary layers", Modeling the Urban Boundary Layer, American Meteorological Society, 53-93.
  14. Britter, R.E. and Hanna, S.R. (2003), "Flow and dispersion in urban areas", Annual Rev. Fluid Mech., 35, 469-496. https://doi.org/10.1146/annurev.fluid.35.101101.161147.
  15. BS-NA-EN1991-1-4:2005 (2005), UK National, Annex to Eurocode 1. Actions on structures. General actions. Wind action. BSI.
  16. Buljac, A. (2019), Aerodynamic and Aeroelastic Characteristics of Cable-Supportd Bridges With Roadway Wind Barriers, Ph.D. Dissertation, University of Zagreb, Croatia.
  17. Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017a), "Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge", Eng. Struct., 137, 310-322. https://doi.org/10.1016/j.engstruct.2017.01.055.
  18. Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017b), "Flutter and galloping of cable-supported bridges with porous wind barriers", J. Wind Eng. Ind. Aerod., 171(November), 304-318. https://doi.org/10.1016/j.jweia.2017.10.012.
  19. Burgess, J.C. and McCardle, G. (2000), "Building cladding air pressure equalisation investigations - comparison between field results and a numerical model", Build. Environ., 35, 251-256. https://doi.org/10.1016/S0360-1323(99)00022-0
  20. Burlando, M., Tizzi, M. and Solari, G. (2017), "Characteristics of downslope winds in the Liguria Region", Wind Struct., 24(6), 613-635. https://doi.org/10.12989/was.2017.24.6.613
  21. Cammelli, S., Azagra, D., Buttgereit, V., Fussell, C., Grey, M., Kaneko, Y. and Scotti, A. (2010), "Adventures in architectural aerodynamics", Proceedings of the Institution of Civil Engineers: Structures and Buildings, 163(2), 119-127. https://doi.org/10.1680/stbu.2010.163.2.119.
  22. Cape, M.R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T. and Domack, E. (2015), "Foehn winds link climate-driven warming to ice shelf evolution in Antarctica", J. Geophys. Res., 120(21), 11,037-11,057. https://doi.org/10.1002/2015JD023465.
  23. Castro, I.P. (1971), "Wake characteristics of two-dimensional perforated plates normal to an air-stream", J. Fluid Mech., 46(3), 599-609. https://doi.org/10.1017/S0022112071000727.
  24. Chan, J.C.L. (2005), "The physics of tropical cyclone motion", Annual Rev. Fluid Mech., 37, 99-128. https://doi.org/10.1146/annurev.fluid.37.061903.175702.
  25. Changnon, S.A. (2009), "Tornado losses in the United States", Nat. Hazards Rev., 10(4), 145-150. https://doi.org/10.1061/(asce)1527-6988(2009)10:4(145).
  26. Chen, X., Li, A., Zhang, Z., Hu, L., Sun, P., Fan, Z. and Liu, X. (2020), "Improving the wind-induced human comfort of the Beijing Olympic Tower by a double-stage pendulum tuned mass damper", Struct. Des. Tall Spec. Build., 29(4), 1-17. https://doi.org/10.1002/tal.1704.
  27. Chen, Z., Fu, X., Xu, Y., Li, C.Y., Kim, B. and Tse, K.T. (2021), "A perspective on the aerodynamics and aeroelasticity of tapering: Partial reattachment", J. Wind Eng. Ind. Aerod., 212, 104590. https://doi.org/10.1016/j.jweia.2021.104590.
  28. Cindori, M., Dzijan, I., Juretic, F. and Kozmar, H. (2020), "The atmospheric boundary layer above generic hills: Computational model of a unidirectional body force-driven flow", Bound. Lay. Meteorol., 176(2), 159-196. https://doi.org/10.1007/s10546-020-00521-0.
  29. Dalgleish, W.A. (1971), "Statistical treatment of peak gusts on cladding", ASCE J. Struct. Div., 97, 2173-2187. https://doi.org/10.1061/JSDEAG.0002989
  30. Davenport A.G. (1964), "The buffeting of large superficial structures by atmospherc turbulence", Annals New York Academy Sci., 116, 135-160. https://doi.org/10.1111/j.1749-6632.1964.tb33943.x
  31. Dutton, R. and Isyumov, N. (1990), "Reduction of tall building motion by aerodynamic treatments", J. Wind Eng. Ind. Aerod., 36, 739-747. https://doi.org/10.1016/0167-6105(90)90416-A
  32. Dyrbye, C. and Hansen, S.O. (1997), Wind Loads on Structures, Wiley & Sons.
  33. Emanuel, K.A. (1991), "The theory of hurricanes", Annu. Rev. Fluid Mech., 23(1), 179-196. https://doi.org/10.1146/annurev.fl.23.010191.001143.
  34. EN1991-1-4:2005 (2005), Eurocode 1: Actions on structures - General actions, Part 1-4: Wind actions. CEN.
  35. Erdal, A. (1998), "A numerical investigation of different parameters that affect the performance of a flow conditioner", Flow Measure Instrument., 8(2), 93-102. https://doi.org/10.1016/S0955-5986(97)00032-0.
  36. Fovell, R.G. and Cao, Y. (2017), "The Santa Ana winds of southern California: Winds, gusts, and the 2007 witch fire", Wind Struct. 24(6), 529-564. https://doi.org/10.12989/was.2017.24.6.529.
  37. Fujita, T.T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales.", J. Atmosp. Sci., https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
  38. Fujita, T.T. (1985), "The downburst: Microburst and macroburst", SMRP Research Paper, 210, 1985.
  39. Gan, G. and Riffat, S.B. (1997), "Pressure loss characteristics of orifice and perforated plates", Experimen. Thermal Fluid Sci., 14(2), 160-165. https://doi.org/10.1016/S0894-1777(96)00041-6.
  40. Ganguli, U. and Dalgliesh. W.A. (1988), "Wind pressures on open rain screen walls: place air Canada", J. Struct. Eng., 114, 3.
  41. Garratt, J.R.. (1992). The Atmospheric Boundary Layer. Cambridge University Press
  42. Gerhardt, H.J. and Janser, F. (1994), "Wind loads on wind permeable facades", J. Wind Eng. Ind. Aerod., 53(1-2), 37-48. https://doi.org/10.1016/0167-6105(94)90017-5.
  43. Giachetti, A. (2018), Wind Effects on Permeable Building Envelopes: A Two Dimensional Exploratory Study, Ph.D. Dissertation, University of Braunschweig - Institute of Technology, Germany, and University of Florence, Italy.
  44. Giachetti, A., Bartoli, G. and Mannini, C. (2019), "Two-dimensional study of a rectangular cylinder with a forebody airtight screen at a small distance", J. Wind Eng. Ind. Aerod., 189, 11-21. https://doi.org/10.1016/j.jweia.2019.03.015.
  45. Grimmond, C.S.B. and Oke, T.R. (2002), "Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS)", J. Appl. Meteorol., 41(7), 792-810. https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2.
  46. Grisogono, B. and Belusic, D. (2009), "A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind", Tellus, Series A: Dyn. Meteorol. Oceanography, 61A(1), 1-16. https://doi.org/10.1111/j.1600-0870.2008.00369.x.
  47. Gu, M. and Quan, Y. (2004), "Across-wind loads of typical tall buildings", J. Wind Eng. Ind. Aerod., 92(13), 1147-1165. https://doi.org/10.1016/j.jweia.2004.06.004.
  48. Guzman-Morales, J., Gershunov, A., Theiss, J., Li, H. and Cayan, D. (2016), "Santa Ana winds of Southern California: Their climatology, extremes, and behavior spanning six and a half decades", Geophys. Res. Lett., 43(6), 2827-2834. https://doi.org/10.1002/2016GL067887.
  49. Hayashida, H. and Iwasa, Y. (1990), "Aerodynamic shape effects of tall building for vortex induced vibration", J. Wind Eng. Ind. Aerod., 33(1-2), 237-242. https://doi.org/10.1016/0167-6105(90)90039-F.
  50. Ho, C.H., Baik, J.J., Kim, J.H., Gong, D.Y. and Sui, C.H. (2004), "Interdecadal changes in summertime typhoon tracks", J. Climate, 17(9), 1767-1776. https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.
  51. Hoinka, K.P. (1985), "Observation of the airflow over the alps during a foehn event", Quart. J. Royal Meteorol. Soc., 111(463), 199-224. https://doi.org/10.1002/qj.49711146309.
  52. Holmes, J.D. (2015), Wind Loading of Structures. Taylor & Francis.
  53. Holmes, J.D. and Oliver, S.E. (2000), "An empirical model of a downburst", Eng. Struct., 22(9), 1167-1172. https://doi.org/10.1016/S0141-0296(99)00058-9.
  54. Hu, G., Hassanli, S., Kwok, K.C.S. and Tse, K.T. (2017), "Wind-induced responses of a tall building with a double-skin facade system", J. Wind Eng. Ind. Aerod., 168, 91-100. https://doi.org/10.1016/j.jweia.2017.05.008.
  55. Hu, G., Song, J., Hassanli, S., Ong, R., Kwok, K.C.S. (2019), "The effects of a double-skin facade on the cladding pressure around a tall building", J. Wind Eng. Ind. Aerod., 191(June), 239-251. https://doi.org/10.1016/j.jweia.2019.06.005.
  56. Hughes, M. and Hall, A. (2010), "Local and synoptic mechanisms causing Southern California's Santa Ana winds", Climate Dyn., 34(6), 847-857. https://doi.org/10.1007/s00382-009-0650-4.
  57. Irwin, P.A. (2008), "Bluff body aerodynamics in wind engineering", J. Wind Eng. Ind. Aerod., 96(6-7), 701-712. https://doi.org/10.1016/j.jweia.2007.06.008.
  58. Ishida, H. (2003), "Double-skin glass facade - Design method of wind pressure", Glass Processing Days 2003, Session 14.
  59. Isyumov, N., Fediw, A.A., Colaco, J. and Banavalkar, P.V. (1992), "Performance of a tall building under wind action", J. Wind Eng. Ind. Aerod., 42(1-3), 1053-1064. https://doi.org/10.1016/0167-6105(92)90112-N.
  60. Jafari, M. and Alipour, A. (2021a), "Review of approaches, opportunities, and future directions for improving aerodynamics of tall buildings with smart facades", Sustain. Cities Soc., 72, 102979. https://doi.org/10.1016/j.scs.2021.102979.
  61. Jafari, M. and Alipour, A. (2021b), "Aerodynamic shape optimization of rectangular and elliptical double-skin facades to mitigate wind-induced effects on tall buildings", J. Wind Eng. Ind. Aerod., 213, 104586. https://doi.org/10.1016/j.jweia.2021.104586.
  62. Jeon, W., Lee, B.H., Yun, H., Kim, J., Kang, S. and Seo, Y. (2020), "Characterization of pressure drop through two-stage particulate air filters", Sci. Technol. Built Environ., 26(6), 835-843. https://doi.org/10.1080/23744731.2020.1738870.
  63. Kareem, A. (1983), "Mitigation of wind induced motion of tall buildings", J. Wind Eng. Ind. Aerod., 11(1-3), 273-284. https://doi.org/10.1016/0167-6105(83)90106-X.
  64. Kawai, H. (1998), "Effect of corner modifications on aeroelastic instabilities of tall buildings", J. Wind Eng. Ind. Aerod., 74-76, 719-729. https://doi.org/10.1016/S0167-6105(98)00065-8.
  65. Kemper, F.H. and Feldmann, M. (2019), "Wind load assumptions for permeable cladding elements considering the installation context", J. Wind Eng. Ind. Aerod., 184(October 2018), 277-288. https://doi.org/10.1016/j.jweia.2018.10.011.
  66. Kikitsu, H. and Sarkar, P.P. (2015), "Building damage, wind speed estimation, and post disaster recovery in an EF5 tornado", Nat. Hazards Rev., 16(2), 04014019. https://doi.org/10.1061/(asce)nh.1527-6996.0000156.
  67. Kim, Y. and Kanda, J. (2010), "Characteristics of aerodynamic forces and pressures on square plan buildings with height variations", J. Wind Eng. Ind. Aerod., 98(8-9), 449-465. https://doi.org/10.1016/j.jweia.2010.02.004.
  68. Kim, Y.C., Bandi, E.K., Yoshida, A. and Tamura, Y. (2015), "Response characteristics of super-tall buildings - Effects of number of sides and helical angle", J. Wind Eng. Ind. Aerod., 145, 252-262. https://doi.org/10.1016/j.jweia.2015.07.001.
  69. Kim, Y.C., Kanda, J. and Tamura, Y. (2011), "Wind-induced coupled motion of tall buildings with varying square plan with height", J. Wind Eng. Ind. Aerod., 99(5), 638-650. https://doi.org/10.1016/j.jweia.2011.03.004.
  70. Kim, Y.M. and You, K.P. (2002), "Dynamic responses of a tapered tall building to wind loads", J. Wind Eng. Ind. Aerod., 90(12-15), 1771-1782. https://doi.org/10.1016/S0167-6105(02)00286-6.
  71. Kim, Y.M., You, K.P. and Ko, N.H. (2008), "Across-wind responses of an aeroelastic tapered tall building", J. Wind Eng. Ind. Aerod., 96(8-9), 1307-1319. https://doi.org/10.1016/j.jweia.2008.02.038.
  72. Kosinski, P., Wojcik, R. and Semen, B. (2019), "Experimental study on the deterioration of thermal insulation performance due to wind washing of the cavity insulation in leaky walls", Sci. Technol. Built Environ., 25(9), 1164-1177. https://doi.org/10.1080/23744731.2019.1634420.
  73. Kozmar, H., Allori, D., Bartoli, G. and Borri, C. (2016), "Complex terrain effects on wake characteristics of a parked wind turbine", Eng. Struct., 110, 363-374. https://doi.org/10.1016/j.engstruct.2015.11.033.
  74. Kozmar, H., Butler, K. and Kareem, A. (2012), "Transient cross-wind aerodynamic loads on a generic vehicle due to bora gusts", J. Wind Eng. Ind. Aerod., 111, 73-84. https://doi.org/10.1016/j.jweia.2012.09.001.
  75. Kwok, K.C.S. (1988), "Effect of building shape on wind-induced response of tall building", J. Wind Eng. Ind. Aerod., 28(1-3), 381-390. https://doi.org/10.1016/0167-6105(88)90134-1.
  76. Kwok, K.C.S., Wilhelm, P.A. and Wilkie, B.G. (1988), "Effect of edge configuration on wind-induced response of tall buildings", Eng. Struct., 10(2), 135-140. https://doi.org/10.1016/0141-0296(88)90039-9.
  77. Leatherman, S.P. (2011), "Hurricane wind damage mitigation: Research and outlook", Nat. Haz. Rev., 12(4), 202-206. https://doi.org/10.1061/(asce)nh.1527-6996.0000048.
  78. Lee, S.J. and Kim, H.B. (1999), "Laboratory measurements of velocity and turbulence field behind porous fences", J. Wind Eng. Ind. Aerod., 80(3), 311-326. https://doi.org/10.1016/S0167-6105(98)00193-7.
  79. Lepri, P., Kozmar, H., Vecenaj, Z. and Grisogono, B. (2014), "A summertime near-ground velocity profile of the Bora wind", Wind Struct., 19(5), 505-522. https://doi.org/10.12989/was.2014.19.5.505.
  80. Lepri, P., Kozmar, H., Vecenaj, Z. and risogono, B. (2017), "Bora wind characteristics for engineering applications", Wind Struct., 24(6), 579-611. https://doi.org/10.12989/was.2017.24.6.579
  81. Lepri, P., Vecenaj, Z., Kozmar, H. and Grisogono, B. (2015), "Near-ground turbulence of the Bora wind in summertime", J. Wind Eng. Ind. Aerod., 147, 345-357. https://doi.org/10.1016/j.jweia.2015.09.013.
  82. Li, Q.S., Zhi, L.H., Tuan, A.Y., Kao, C.S., Su, S.C., Wu, C.F. (2011), "Dynamic behavior of Taipei 101 tower: Field Measurement and Numerical Analysis", J. Struct. Eng., 137(1), 143-155. https://doi.org/10.1061/(asce)st.1943-541x.0000264.
  83. Li, X. and Li., Q.S. (2019), "Wind-induced interference effects between twin tapered skyscrapers", Struct. Des. Tall Spec. Build., 28(6), 1-14. https://doi.org/10.1002/tal.1594.
  84. Li, Y.G., Zhang, M.Y., Li, Y., Li, Q.S. and Liu, S.J. (2020), "Experimental study on wind load characteristics of high-rise buildings with opening", Struct. Des. Tall Spec. Build., 29(9), 1-15. https://doi.org/10.1002/tal.1734.
  85. Liu, P.S. and Chen, G.F. (2014), Porous Materials, Processing and Applications, Butterworth-Heinemann.
  86. Liu, R. and Ting, D.S.K. (2007), "Turbulent flow downstream of a perforated plate: Sharp-edged orifice versus finite-thickness holes", J. Fluids Eng., Transac. ASME, 129(9), 1164-1171. https://doi.org/10.1115/1.2754314.
  87. Liu, R., Ting, D.S.K. and Rankin, G.W. (2004), "On the generation of turbulence with a perforated plate", Experiment. Thermal Fluid Sci., 28(4), 307-316. https://doi.org/10.1016/S0894-1777(03)00106-7.
  88. Loredo-Souza, A.M., Wittwer, A.R., Rohcha, M.M., De Bortoli, M. E., Oliveira, M.G.K. and Marighetti, J.O. (2016), "Brazil and Argentina Joint Program in Wind Engineering", Wind Engineers JAWE, 41(4), 331-335. https://doi.org/10.5359/jawe.41.331
  89. Lou, W., Huang, M., Zhang, M. and Lin, N. (2012), "Experimental and zonal modeling for wind pressures on double-skin facades of a tall building", Energy Build., 54, 179-191. https://doi.org/10.1016/j.enbuild.2012.06.025.
  90. Malavasi, S., Messa, G., Fratino, U. and Pagano, A. (2012), "On the pressure losses through perforated plates", Flow Measure. Instrument., 28, 57-66. https://doi.org/10.1016/j.flowmeasinst.2012.07.006.
  91. Mazellier, N., Danaila, L. and Renou, B. (2010), "Multi-scale energy injection: A new tool to generate intense homogeneous and isotropic turbulence for premixed combustion", J. Turbulence, 11, 1-30. https://doi.org/10.1080/14685248.2010.519708.
  92. Melbourne, W.H. (1980), "Comparison of measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerod., 6(1-2), 73-88. https://doi.org/10.1016/0167-6105(80)90023-9.
  93. Minier, J.P. and Peirano, E. (2001), "The pdf approach to turbulent polydispersed two-phase flows", Phy. Report, 352(1-3), 1-214. https://doi.org/10.1016/S0370-1573(01)00011-4.
  94. Miyashita, K., Katagiri, J., Nakamura, O., Ohkuma, T., Tamura, Y., Itoh, M. and Mimachi, T. (1993), "Wind-induced response of high-rise buildings Effects of corner cuts or openings in square buildings", J. Wind Eng. Ind. Aerod., 50(C), 319-328. https://doi.org/10.1016/0167-6105(93)90087-5.
  95. Montgomery, M.T. and Smith, R.K. (2017), "Recent developments in the fluid dynamics of tropical cyclones", Annual Rev. Fluid Mech., 49, 541-574. https://doi.org/10.1146/annurev-fluid010816-060022.
  96. Nagar, S.K., Raj, R. and Dev, N. (2020), "Experimental study of wind-induced pressures on tall buildings of different shapes", Wind Struct., 31(5), 431-443. http://dx.doi.org/10.12989/was.2020.31.5.431.
  97. Okada, H. and Kong, L. (1999), "The Effects of Open Passage on Reducing Wind Response of Tall Building", 29th Technical Report, Public Works Research institute. Japan. 561-566.
  98. Ouazzane, A.K. and Benhadj, R. (2002), "Flow conditioners design and their effects in reducing flow metering errors", Sensor Review, 22(3), 223-231. https://doi.org/10.1108/02602280210433061.
  99. Overend, M. and Zammit, K. (2006), "Wind loading on cladding and glazed facades", International Symposium on the Application of Architectural Glass.
  100. Ozahi, E. (2015), "An analysis on the pressure loss through perforated plates at moderate Reynolds numbers in turbulent flow regime", Flow Measure. Instrument., 43, 6-13. https://doi.org/10.1016/j.flowmeasinst.2015.03.002.
  101. Perera, M.D.A.E.S. (1981), "Shelter behind two-dimensional solid and porous fences", J. Wind Eng. Ind. Aerod., 8(1-2), 93-104. https://doi.org/10.1016/0167-6105(81)90010-6.
  102. Peterka, J.A. and Cermak. J.E. (1975), "Wind pressures on buildings - probability densities", ASCE J. Struct. Div.. 101, 1255-1267. https://doi.org/10.1061/JSDEAG.0004076
  103. Pomaranzi, G., Daniotti, N., Schito, P., Rosa, L. and Zasso, A. (2020), "Experimental assessment of the effects of a porous double skin facade system on cladding loads", J. Wind Eng. Ind. Aerod., 196(October), 104019. https://doi.org/10.1016/j.jweia.2019.104019.
  104. Puliafito, D., Allende, E., Mulena, C., Cremades P., Lakkis S. (2015), "Evaluation of the WRF model configuration for Zonda wind events in a complex terrain", Proceedings of the 12th German Wind Energy Conference - DEWEK, November 7-8, Bremen, Germany.
  105. Quan, Y., Chen, J. and Gu, M. (2020), "Aerodynamic interference effects of a proposed taller high-rise building on wind pressures on existing tall buildings", Struct. Des. Tall Spec. Build., 29(4), 1-17. https://doi.org/10.1002/tal.1703.
  106. Raine, J.K. and Stevenson, D.C. (1977), "Wind protection by model fences in a simulated atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 2, 159-180. https://doi.org/10.1016/0167-6105(77)90015-0
  107. Ranga Raju, K.G., Garde, R.J., Singh, S.K. and Singh, N. (1988), "Experimental study on characteristics of flow past porous fences", J. Wind Eng. Ind. Aerod., 29(1-3), 155-163. https://doi.org/10.1016/0167-6105(88)90154-7.
  108. Sahin, B. (1989), "Pressure losses in an isolated perforated plate and jets emerging from the perforated plate", Int. J. Mech. Sci., 31(1), 51-61. https://doi.org/10.1016/0020-7403(89)90118-5.
  109. Sahin, B. and Ward-Smith, A.J. (1987), "The use of perforated plates to control the flow emerging from a wide-angle diffuser, with application to electrostatic precipitator design", Int. J. Heat Fluid Flow, 8(2), 124-131. https://doi.org/10.1016/0142-727X(87)90011-7.
  110. Seginer, I. and Sagi, R. (1971), "Drag on a windbreak in two-dimensional flow", Agricultural Meteorol., 9(C), 323-333. https://doi.org/10.1016/0002-1571(71)90031-8.
  111. Sharma, A., Mittal, H. and Gairola, A. (2018), "Mitigation of wind load on tall buildings through aerodynamic modifications: Review", J. Build. Eng., 18, 180-194. https://doi.org/10.1016/j.jobe.2018.03.005
  112. Simiu, E., Vickery, P. and Kareem, A. (2007), "Relation between Saffir-Simpson Hurricane Scale Wind Speeds and Peak 3-s Gust Speeds over Open Terrain", J. Struct. Eng., 133(7), 1043-1045. https://doi.org/10.1061/(asce)0733-9445(2007)133:7(1043).
  113. Sommers, W.T. (1978), "LFM Dorecast Variables Related to Santa Ana Wind Occurrences", Monthly Weather Rev., 106, 1307-1316. https://doi.org/10.1175/1520-0493(1978)106<1307:LFVRTS>2.0.CO;2
  114. Spearman, E.P., Sattary, J.A. and Reader-Harris, M.J. (1996), "Comparison of velocity and turbulence profiles downstream of perforated plate flow conditioners", Flow Measure. Instrument., 7(3-4), 181-199. https://doi.org/10.1016/S0955-5986(96)00013-1.
  115. Speirs, J.C., Steinhoff, D.F., McGowan, H.A., Bromwich, D.H., Monaghan, A.J. (2010), "Foehn winds in the McMurdo Dry Valleys, Antarctica: The origin of extreme warming events", J. Climate, 23(13), 3577-3598. https://doi.org/10.1175/2010JCLI3382.1.
  116. Straube, J. (2001), "Pressure Moderation and Rain Penetration Control", OBEC PER Seminar.
  117. Tamura, T., Miyagi, T. and Kitagishi, T. (1998), "Numerical prediction of unsteady pressures on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 74-76, 531-542. https://doi.org/10.1016/S0167-6105(98)00048-8.
  118. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., Chul Kim, Y. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
  119. Telenta, M., Duhovnik, J., Kosel, F. and Sajn, V. (2014), "Numerical and experimental study of the flow through a geometrically accurate porous wind barrier model", J. Wind Eng. Ind. Aerod., 124, 99-108. https://doi.org/10.1016/j.jweia.2013.11.010.
  120. Thordal, M.S., Bennetsen, J.C., Capra, S., Kragh, A.K., Koss, H. H.H. (2020), "Towards a standard CFD setup for wind load assessment of high-rise buildings: Part 2 - Blind test of chamfered and rounded corner high-rise buildings", J. Wind Eng. Ind. Aerod., 205, 104282. https://doi.org/10.1016/j.jweia.2020.104282.
  121. Thuillier, R. H. and Lappe, U.O. (1964), "Wind and temperature profile characteristic from a 1400ft tower", J. Appl. Meteorol., 3, 299-306. https://doi.org/10.1175/1520-0450(1964)003<0299:WATPCF>2.0.CO;2
  122. Tse, K.T., Hitchcock, P.A., Kwok, K.C.S., Thepmongkorn, S. and Chan, C.M. (2009), "Economic perspectives of aerodynamic treatments of square tall buildings", J. Wind Eng. Ind. Aerod., 97(9-10), 455-467. https://doi.org/10.1016/j.jweia.2009.07.005.
  123. Unsplash, 432 Park Avenue (2020), https://unsplash.com/photos/fB_qJwduGYw
  124. Unsplash, Burj Khalifa (2020), https://unsplash.com/photos/lMzbYcCsIpo
  125. Unsplash, Petronas Towers (2019), https://unsplash.com/photos/kxEvTRN0dSk
  126. Unsplash, Taipei 101 (2018), https://unsplash.com/photos/DtHfpcvPBVI
  127. Vaglio, C. (2011), "Structual Response of Multi-Story DoubleSkin Facades", Glass Performance Days 2011.
  128. Van der Hoven, I. (1957), "Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour", J. Meteorol., 14(2), 160-164. https://doi.org/10.1175/15200469(1957)014<0160:PSOHWS>2.0.CO;2.
  129. Wang, Q., Qiao, H., Li, W., You, Y., Fan, Z. and Tiwari, N. (2020), "Parametric optimization of an inerter-based vibration absorber for wind-induced vibration mitigation of a tall building", Wind Struct., 31(3), 241-253. http://dx.doi.org/10.12989/was.2020.31.3.241.
  130. Wikimedia Commons, Beijing Olympic Tower (2016), https://commons.wikimedia.org/wiki/File:Olympic_Park_Observation_Tower,_Beijing.jpg
  131. Wikimedia Commons, Map of local winds, (2009), https://commons.wikimedia.org/wiki/File:Map_local_winds.png
  132. Wikimedia Commons, Shanghai World Financial Center (2014), https://commons.wikimedia.org/wiki/File:Shanghai_World_Financial_Center_at_night_02.JPG
  133. Xie, J. and Yang, X.Y. (2019), "Exploratory study on wind-adaptable design for super-tall buildings", Wind Struct., 29(6), 489-497, http://dx.doi.org/10.12989/was.2019.29.6.489.
  134. Yaragal, S.C., Govinda Ram, H.S. and Keshava Murthy, K. (1997), "An experimental investigation of flow fields downstream of solid and porous fences", J. Wind Eng. Ind. Aerod., 66(2), 127-140. https://doi.org/10.1016/S0167-6105(97)00015-9.
  135. Yuan, K., Hui, Y., Chen, Z. (2018), "Effects of facade appurtenances on the local pressure of high-rise building", Journal of Wind Engineering and Industrial Aerodynamics, 178, 26-37. doi:10.1016/j.jweia.2018.05.004
  136. Zhang, Z., Quan, Y., Gu, M., Xiong, Y. (2013), "Effects of corner chamfering and rounding modification on aerodynamic coefficients of square tall buildings", Tumu Gongcheng Xuebao/China Civil Eng. J., 46(9), 12-20. https://doi.org/10.3901/JME.2010.08.012
  137. Zhu, H., Yang, B., Zhang, Q., Pan, L. and Sun, S. (2021), "Wind engineering for high-rise buildings: A review", Wind Struct., 32(3), 249-265. https://doi.org/10.12989/WAS.2021.32.3.249.
  138. Zhu, J. and He, G. (2019), "Heat transfer coefficients of double skin facade windows", Sci. Technol. Built Environ., 25(9), 1143-1151. https://doi.org/10.1080/23744731.2019.1624447.