Acknowledgement
본 연구는 한국건설기술연구원 민간수탁사업 "2021년 지반설계 정수산정 및 분석사업" 중 현대건설(주) 김포-파주 2공구 현장의 "PC세그먼트용 콘크리트 시험체 RABT화재시험"의 지원으로 수행되었습니다.
References
- ASTM E794-06 (2018), Standard test method for melting and crystallization temperatures by thermal analysis, ASTM, pp. 1-4.
- Beard, A., Carvel, R. (2005), The Handbook of Tunnel Fire Safety, Thomas Telford Publishing, London, pp. 113-115.
- Chang, S.H., Choi, S.W., Kwon, J.W., Kim, S.H., Bae, G.J. (2007), "Alteration of mechanical properties of tunnel structural members after a tunnel fire accident", Journal of Korean Tunnelling and Underground Space Association, Vol. 9, No. 2, pp. 157-169.
- Choi, S.W., Chang, S.H., Kim, H.Y., Jo, B.H. (2010), "Assessment of structural fire resistance of a fireproofed immersed tunnel under tunnel fire scenarios", Journal of Korean Tunnelling and Underground Space Association, Vol. 12, No. 6, pp. 429-441.
- Choi, S.W., Lee, G.P., Chang, S.H., Park, Y.T., Bae, G.J. (2014), "Fire resistance assessment of high strength segment concrete depending on PET fiber amount under fire curves", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 3, pp. 311-320. https://doi.org/10.9711/KTAJ.2014.16.3.311
- Clement, F., Focaracci, A. (2011), "Fire protection in tunnels: requirements, solutions and case histories", Proceedings of WTC2011, Helsinki, Finland.
- EN 1992-1-2 (2004), Eurocode 2: Design of concrete structures-Part 1-2: General rules-Structural fire design; Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC; European Union: Brussels, Belgium, 2004, pp. 60.
- Hager, I., Mroz, K., Tracz, T. (2019), "Contribution of polypropylene fibres melting to permeability change in heated concrete - the fibre amount and length effect", Proceedings of the IOP Conference Series: Materials Science and Engineering, Vol. 706, No. 1, Montevideo, pp. 012009.
- ITA (2004), Guidelines for structural fire resistance for road tunnels, Working Group No. 6 Maintenance and Repair, pp. 2-4~6.
- Khoury, G.A., Majorana, C.E., Pesavento, F., Schrefler, B.A. (2002), "Modelling of heated concrete", Magazine of Concrete Research, Vol. 54, No. 2, pp. 77-101. https://doi.org/10.1680/macr.2002.54.2.77
- Kodur, V.K.R., Phan, L. (2007), "Critical factors governing the fire performance of high strength concrete systems", Fire Safety Journal, Vol. 42, No. 6-7, pp. 482-488. https://doi.org/10.1016/j.firesaf.2006.10.006
- KS M 3016: 2011, A (2011), Testing method of the density and specific gravity for plastics (A method), Korean Standards Association, pp. 1-10.
- Lee, G.P., Park, Y.T., Choi, S.W., Bae, G.J., Chang, S.H., Kang, T.S., Lee, J.S. (2012), "An experimental study on mechanical behavior of shield segment with high-strength concrete and high-tension rebar", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 3, pp. 215-230. https://doi.org/10.9711/KTAJ.2012.14.3.215
- Melbye, T., Dimmock, R. (2006), "Thermal barriers and fibre concrete roles in the passive fire protection of tunnels", Shotcrete for Underground Support X, ASCE 2006, pp. 285-297.
- Phan, L.T. (1996), Fire performance of high-strength concrete: a report of the state-of-the-art, NISTIR 5934, National Institute of Standards and Technology, pp. 54-56.
- Ulm, F.J., Coussy, O., Bazant, Z.P. (1999), "The "Chunnel" fire. I: Chemoplastic softening in rapidly heated concrete", Journal of Engineering Mechanics, Vol. 125, No. 3, pp. 272-282. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:3(272)
- Zeiml, M., Leithner, D., Lackner, R., Mang, H.A. (2006), "How do polypropylene fibers improve the spalling behavior of in-situ concrete?", Cement and Concrete Research, Vol. 36, No. 5, pp. 929-942. https://doi.org/10.1016/j.cemconres.2005.12.018