Acknowledgement
The authors express their sincere thanks to the anonymous referees for the valuable suggestions and comments for the improvement of the paper.
References
- A. M. Blaga, A note on warped product almost quasi-Yamabe solitons, Filomat, 33(2019), 2009-2016. https://doi.org/10.2298/fil1907009b
- A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10, Springer-Verlag, Berlin, 1987.
- D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat., 34(1990), 199-207. https://doi.org/10.5565/PUBLMAT_34190_15
- B. Y. Chen and S. Desahmukh, Yamabe and quasi-Yamabe soliton on euclidean submanifolds, Mediterranean Journal of Mathematics, August 2018, DOI: 10.1007/s00009-018-1237-2.
- S. Desahmukh and B. Y. Chen, A note on Yamabe solitons, Balk. J. Geom. Appl., 23(1)(2018), 37-43.
- D. Chinea and C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl., 156(1990) 15-30. https://doi.org/10.1007/BF01766972
- U. C. De, and A. Sarkar, On three-dimensional Trans-Sasakian Manifolds, Extracta Math., 23(2008) 265-277.
- C. Dey and U. C. De, A note on quasi-Yambe soliton on contact metric manifolds, J. of Geom., 111(11)(2020).
- A. Gray and L. M. Harvella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(1980), 35-58. https://doi.org/10.1007/BF01796539
- G. Huang and H. Li, On a classification of the quasi Yamabe gradient solitons, Methods Appl. Anal., 21(3)(2014) 379-389. https://doi.org/10.4310/MAA.2014.v21.n3.a7
- C. Aquino, A. Barros and E. jr. Riberio, Some applications of Hodge-de Rham decomposition to Ricci solitons, Results. Math., 60(2011), 235-246. https://doi.org/10.1007/s00025-011-0152-7
- R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math. Amer. Math. Soc., 71(1988), 237-262. https://doi.org/10.1090/conm/071/954419
- B. Leandro and H. Pina, Generalized quasi Yamabe gradient solitons, Differential Geom. Appl., 49(2016), 167-175. https://doi.org/10.1016/j.difgeo.2016.07.008
- K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-103. https://doi.org/10.2748/tmj/1178241594
- J. C. Marrero, The local structure of Trans-Sasakian manifolds, Annali di Mat. Pura ed Appl., 162(1992), 77-86. https://doi.org/10.1007/BF01760000
- J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32(1985), 187-193. https://doi.org/10.5486/PMD.1985.32.3-4.07
- S. Pigola, M. Rigoli, M. Rimoldi and A. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10(5)(2011) 757-799.
- A. A. Shaikh, M. H. Shahid and S. K. Hui, On weakly conformally symmetric manifolds. Matematicki Vesnik, 60(2008), 269-284.
- M. D. Siddiqi, Generalized Yamabe solitons on Trans-Sasakian manifolds, Matematika Instituti Byulleteni Bulletin of Institute of Mathematics, 3(2020), 77-85.
- J. B. Jun and M. D. Siddiqi, Almost Quasi-Yamabe Solitons on Lorentzian concircular structure manifolds- [(LCS)n], Honam Mathematical Journal, 42(3)(2020), 521-536. https://doi.org/10.5831/hmj.2020.42.3.521
- M. D. Siddiqi, Generalized Ricci Solitons on Trans-Sasakian Manifolds, Khayyam Journal of Math., 4(2)(2018), 178-186.
- M. D. Siddiqi, η-Ricci soliton in 3-diamensional normal almost contact metric manifolds, Bull. Transilvania Univ. Brasov, Series III: Math, Informatics, Physics, 11(60)(2018) 215-234.
- M. D. Siddiqi, η-Ricci soliton in (ε, δ)-trans-Sasakian manifolds, Facta. Univ. (Nis), Math. Inform., 34(1)(2019), 4556.
- S. T. Yau, Harmonic functions on complete Riemannian manifolds, Commu. Pure. Appl. Math., 28(1975), 201-228. https://doi.org/10.1002/cpa.3160280203
- M. El A. Mekki and A. M. Cherif, Generalised Ricci solitons on Sasakian manifolds, Kyungpook Math. J., 57(2017), 677-682. https://doi.org/10.5666/KMJ.2017.57.4.677