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Abstract. We partially characterize criteria for the n-universality of positive-definite

integer-matrix quadratic forms. We then obtain the uniqueness of Oh’s 8-universality cri-

terion [11] as a corollary.

1. Introduction

A degree-two homogeneous polynomial in n independent variables is called
a quadratic form (or just form) of rank n. For a rank-n quadratic form
Q(x1, . . . , xn) =

∑
i,j aijxixj (where aij = aji), the matrix given by L = (aij)

is the Gram Matrix of a Z-lattice L equipped with a symmetric bilinear form B(·, ·)
such that B(L,L) ⊆ Z. Then, Q(x) = xTLx = B(Lx,x) for x ∈ Rn.

A rank-n quadratic form Q is said to represent an integer k if there exists an
x ∈ Zn such that Q(x) = k. More generally, a Z-lattice L represents another
Z-lattice ` if there exists a Z-linear, bilinear form-preserving injection ` → L. A
quadratic form is called universal if it represents all positive integers. Analogously, a
lattice is called n-universal if it represents all rank-n positive-definite integer-matrix
Z-lattices. Connecting the two notions of universality, we observe that a rank-n
quadratic form Q is universal if and only if it is 1-universal, as for an integer k,

k = Q(x1, . . . , xn) ⇐⇒ Q(x1x, . . . , xnx) = kx2.

In 1993, Conway and Schneeberger announced their celebrated Fifteen Theo-
rem, giving a criterion characterizing the universal positive-definite integer-matrix
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quadratic forms. Specifically, they showed that any positive-definite integer-matrix
form that represents the set of nine critical numbers

{1, 2, 3, 5, 6, 7, 10, 14, 15}

is universal (see [1, 3]). Kim, Kim, and Oh [6] presented an analogous criterion for
2-universality, showing that a positive-definite integer-matrix lattice is 2-universal
if and only if it represents the set of forms

S2 = {( 1 0
0 1 ) , ( 2 0

0 3 ) , ( 3 0
0 3 ) , ( 2 1

1 2 ) , ( 2 1
1 3 ) , ( 2 1

1 4 )} .

Oh [11] gave a similar criterion for 8-universality, which we state in Theorem 4.1 of
Section 4.

A set S of rank-n lattices having the property that a lattice L is n-universal if
and only if L represents every lattice in S is called an n-criterion set. Thus, for
example, the set S2 obtained by Kim, Kim, and Oh [6] is a 2-criterion set and the
set of integers found by Conway [3] naturally gives the 1-criterion set

S1 =
{
x2, 2x2, 3x2, 5x2, 6x2, 7x2, 10x2, 14x2, 15x2

}
.

The set S1 is known to be the unique minimal 1-criterion set (see [7]), in the
sense that if S′1 is a 1-criterion set, then S1 ⊆ S′1. The author [9] obtained an
analogous uniqueness result for the 2-criterion set S2.

Kim, Kim, and Oh [7] have proven that n-criterion sets exist for all positive
integers n. However, the problems of finding and determining the uniqueness of
these sets have proven to be difficult (see the discussion in [7]). Here, we advance
both problems: We obtain two simple (partial) characterization results for arbitrary
n-criterion sets, from which we obtain the uniqueness of Oh’s 8-universality criterion
as a corollary.

Since we first circulated this paper, there has been renewed attention in char-
acterizing criterion sets: Elkies, Kane, and the author [5] identified several families
of lattices for which there exist multiple universality criteria of different sizes, in-
cluding one based on the Zn and E8 lattices that builds on our work here. More
recently, Lee [10] and Kim, Lee, and Oh [8] showed that the minimal n-criterion
sets are not unique for n ≥ 9, and introduced an elegant theory of recoverable
lattices that substantially generalizes [5]. (See also recent work of Chan and Oh [2]
characterizing classes of exceptional sets for rank-n quadratic forms, which in some
sense can be thought of as building blocks for criterion sets.)

2. Notation and Terminology

We use the lattice-theoretic language of quadratic form theory. A complete
introduction to this approach may be found in [12]. In addition, we use the lattice
notation of [4], under which In is the rank-n lattice of the form 〈1, . . . , 1〉 and E8 is
the unique even unimodular lattice of rank 8.
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For a Z-lattice (or hereafter, just lattice) L with basis {x1, . . . ,xn}, we write
L ∼= Zx1 + · · · + Zxn. If L is of the form L = L1 ⊕ L2 for sublattices L1 and L2

of L with B(L1, L2) = 0, then we write L ∼= L1⊥L2 and say that L1 and L2 are
orthogonal.

For a sublattice ` of L1⊥L2 that can be expressed in the form

` ∼= Z(x1,1 + x2,1) + · · ·+ Z(x1,n + x2,n)

with xi,j ∈ Li, we denote `(Li) := Zxi,1 + · · · + Zxi,n. We naturally extend this
notation to lattices ` represented by L1⊥L2. We then say that a lattice is additively
indecomposable if either `(L1) ∼= 0 or `(L2) ∼= 0 whenever L1⊥L2 represents `.
Otherwise, we say that ` is additively decomposable.

3. Partial Characterization of n-Criterion Sets

In this section, we prove two results that partially characterize the contents of
arbitrary n-criterion sets.

Proposition 3.1. Any n-criterion set must include the lattice In.

Proof. If T is a finite, nonempty set of rank-n lattices not containing In, then
every lattice T ∈ T may be written in the form T ∼= Ik⊥T ′, where 0 ≤ k < n, the
sublattice T ′ is of rank n− k, and the first minimum of T ′ is larger than 1. Indeed,
any Ik-sublattice of T is unimodular and therefore splits T ; the condition on T ′

follows from Minkowski reduction.
We may therefore write T in the form

T =

n−1⋃
k=0

{Ik⊥Tk,i}iki=1 ,

where 0 < |T| =
∑n−1

k=0 ik and each Tk,i is a rank-(n− k) lattice with first minimum
greater than 1. Then, the lattice

In−1⊥
((
⊥i0

i=1 T0,i

)
⊥ · · ·⊥

(
⊥in−1

i=1 Tn−1,i

))
represents all of T but does not represent In. It follows that T is not an n-criterion
set; hence, any n-criterion set must contain In. 2

Proposition 3.2. Let E be the set of additively indecomposable unimodular lattices
of rank n. If E 6= ∅, then any n-criterion set must include at least one lattice
E ∈ E.

Proof. Suppose that E 6= ∅. If T = {Ti}ki=1 is a finite, nonempty set of rank-n
lattices with T ∩ E = ∅, then every lattice Ti ∈ T is either additively decomposable
or not unimodular (or both). Now, we consider the lattice

T1⊥ · · ·⊥Tk,
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which of course represents all of T by construction.

If T1⊥ · · ·⊥Tk were to represent some E ∈ E, then under any such representation
we would have E(Ti) ∼= 0 for all but one i (with 1 ≤ i ≤ k) because E is additively
indecomposable. Then, for some i (again, with 1 ≤ i ≤ k), the lattice Ti would
represent E. In that case, as E is unimodular, the associated sublattice of Ti

would split Ti as Ti
∼= E⊥T ′—and since both E and Ti are of rank n, we would

have T ′ ∼= 0; hence, Ti
∼= E. But this is impossible because Ti is either additively

decomposable or not unimodular, whereas E ∈ E is both additively indecomposable
and unimodular.

Thus, we have found a lattice that represents all of T but cannot represent any
E ∈ E. As E 6= ∅ by hypothesis, we see that T must not be an n-criterion set; the
result follows. 2

Remark 3.3. It is clear that direct analogues of Propositions 3.1 and 3.2 hold
in the more general setting of S-universal lattices discussed in [7]. In particular,
suppose that S is an infinite set of lattices. Then, if n = max {k : Ik ∈ S} > 0, any
finite set SS ⊂ S with the property that a lattice L represents every ` ∈ S if and
only if L represents every ` ∈ SS must contain In. Similarly, such a set SS must
contain an additively indecomposable unimodular lattice if S does.

4. Uniqueness of The 8-Criterion Set

Oh [11] obtained the following 8-criterion set.

Theorem 4.1.([11, remark on Theorem 3.1]) The set S8 = {I8, E8} is an 8-criterion
set.

The set S8 is clearly a minimal 8-criterion set, as for each ` ∈ S8 there is a
lattice that represents S8 \ ` but does not represent `. (The single lattice in S8 \ `
suffices.) Meanwhile, our characterization results imply the following corollary,
which strengthens Theorem 4.1.

Corollary 4.2. Every 8-criterion set must contain S8 as a subset.

Proof. As E8 is the unique additively indecomposable unimodular lattice of rank 8,
the result follows directly from Propositions 3.1 and 3.2. 2

Corollary 4.2, when combined with Theorem 4.1, shows that S8 is the unique
minimal 8-criterion set.
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