DOI QR코드

DOI QR Code

NiOx-based hole injection layer for organic light-emitting diodes

유기발광소자에 적용 가능한 NiOx 기반의 정공주입층 연구

  • Kim, Junmo (Departemnt of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Gim, Yejin (Departemnt of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Wonho (Departemnt of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Donggu (Department of Semiconductor Engineering, Kumoh National Institute of Technology)
  • 김준모 (금오공과대학교 고분자공학과) ;
  • 김예진 (금오공과대학교 고분자공학과) ;
  • 이원호 (금오공과대학교 고분자공학과) ;
  • 이동구 (경상국립대학교 반도체공학과)
  • Received : 2021.08.18
  • Accepted : 2021.09.10
  • Published : 2021.09.30

Abstract

Organic semiconductors have received tremendous attention for their research because of their tunable electrical and optical properties that can be achieved by changing their molecular structure. However, organic materials are inherently unstable in the presence of oxygen and moisture. Therefore, it is necessary to develop moisture and air stable semiconducting materials that can replace conventional organic semiconductors. In this study, we developed a NiOx thin film through a solution process. The electrical characteristics of the NiOx thin film, depending on the thermal annealing temperature and UV-ozone treatment, were determined by applying them to the hole injection layer of an organic light-emitting diode. A high annealing temperature of 500 ℃ and UV-ozone treatment enhanced the conductivity of the NiOx thin films. The optimized NiOx exhibited beneficial hole injection properties comparable those of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), a conventional organic hole injection layer. As a result, both devices exhibited similar power efficiencies and the comparable electroluminescent spectra. We believe that NiOx could be a potential solution which can provide robustness to conventional organic semiconductors.

Keywords

Acknowledgement

이 연구는 금오공과대학교 학술연구비로 지원되었다(2019104037).

References

  1. B. Li, Z. Yang, W. Gong, X. Chen, D. W. Bruce, S. Wang, H. Ma, Y. Liu, W. Zhu, Z. Chi, and Y. Wang, "Intramolecular Through-Space Charge Transfer Based TADF-Active Multifunctional Emitters for High Efficiency Solution-Processed OLED", Adv. Optical Mater., Vol. 9, No. 5, pp. 2100180(1)-2100180(10), 2021.
  2. K. H. Kim, S. Lee, C. K. Moon, S. Y. Kim, Y. S. Park, J. H. Lee, J. W. Lee, J. Huh, Y. You, and J. J. Kim, "Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes", Nat. Commun., Vol. 5, pp. 4769(1)-4769(8), 2014. https://doi.org/10.1038/ncomms5769
  3. S. Y. Kim, W. I. Jeong, C. Mayr, Y. S. Park, K. H. Kim, J. H. Lee, C. K. Moon, W. Brutting, and J. J. Kim, "Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter", Adv. Funct. Mater., Vol. 23, No. 31, pp. 3896-3900, 2013. https://doi.org/10.1002/adfm.201300104
  4. E. Forsythe, M. A. Abkowitz, and Y. Gao, "Tuning the Carrier Injection Efficiency for Organic Light-Emitting Diodes", J. Phys. Chem. B, Vol. 104, No. 16, pp. 3948-3952, 2000. https://doi.org/10.1021/jp993793o
  5. J. H. Kim, J. Seo, D. G. Kwon, J. A. Hong, J. Hwang, H. K. Choi, J. Moon, J. I. Lee, D. Y. Jung, S. Y. Choi, and Y. Park, "Carrier injection efficiencies and energy level alignments of multilayer graphene anodes for organic light-emitting diodes with different hole injection layers", Carbon, Vol. 79, pp. 623-630, 2014. https://doi.org/10.1016/j.carbon.2014.08.024
  6. N. Hai, Z. Bo and T. X. Zhong, "Significant improvement of OLED efficiency and stability by doping both HTL and ETL with different dopant in heterojunction of polymer/small-molecules", Chinese Phys., Vol. 16, No. 3, pp. 730-734, 2007. https://doi.org/10.1088/1009-1963/16/3/028
  7. L. S. Liao and K. P. Klubek, "Power efficiency improvement in a tandem organic light-emitting diode", Appl. Phys. Lett., Vol. 92, pp. 223311(1)-223311(4), 2008. https://doi.org/10.1063/1.2938269
  8. J. H. Lee, S. Lee, J. B. Kim, J. Jang, and J. J. Kim, "A high performance transparent inverted organic light emitting diode with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile as an organic buffer layer", J. Mater. Chem., Vol. 22, No. 30, pp. 15262-15266, 2012. https://doi.org/10.1039/c2jm32438e
  9. S. Gardonio, L. Gregoratti, P. Melpignano, L. Aballe, V. Biondo, R. Zamboni, M. Murgia, S. Caria, and M. Kiskinova, "Degradation of organic light-emitting diodes under different environment at high drive conditions", Organic Electronics, Vol. 8, No. 1, pp. 37-43, 2007. https://doi.org/10.1016/j.orgel.2006.10.005
  10. M. Schaer, F. Nuesch, D. Berner, W. Leo, and L. Zuppiroli, "Water Vapor and Oxygen Degradation Mechanisms in Organic Light Emitting Diodes", Adv. Funct. Mater., Vol. 11, No. 2, pp. 116-121, 2001. https://doi.org/10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B
  11. J. Kim, H. J. Park, C. P. Grigoropoulos, D. Lee, and J. Jang, "Solution-processed nickel oxide nanoparticles with NiOOH for hole injection layers of high-efficiency organic light-emitting diodes", Nanoscale, Vol. 8, No. 40, pp. 17608-17615, 2016. https://doi.org/10.1039/C6NR04643F
  12. Shahnawaz, S. S. Swayamprabha, M. R. Nagar, R. A. K. Yadav, S. Gull, D. K. Dubey, and J.-H. Jou, "Hole-transporting materials for organic light-emitting diodes: an overview", J. Mater. Chem. C, Vol. 7, pp. 7144-7158, 2019. https://doi.org/10.1039/C9TC01712G
  13. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, "Transition metal oxides as the buffer layer for polymer photovoltaic cells", Appl. Phys. Lett., Vol. 88, No. 7, pp. 073508(1)-073508(3), 2006. https://doi.org/10.1063/1.2174093
  14. I. M. Chan, T. Y. Hsu, and F. C. Hong, "Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode", Appl. Phys. Lett., Vol. 81, No. 10, pp. 1899-1901, 2002. https://doi.org/10.1063/1.1505112
  15. P. Kumar, N. Agrawal, S. D. Choudhary, and A. K. Gautam, "Highly-Efficient Solution Processed Yellow Organic Light Emitting Diode With Tungsten Trioxide Hole Injection/Transport Layer", IEEE, Vol. 19, pp. 61-66, 2019.
  16. S. Liu, R. Liu, Y. Chen, S. Ho, J. H. Kim, and F. So, "Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-processed Organic Light-Emitting Diodes", Chem. Mater., Vol. 26, No. 15, pp. 4528-4534, 2014. https://doi.org/10.1021/cm501898y
  17. Y. Sun, W. Chen, Y. Wu, Z. He, S. Zhang, and S. Chen, "A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes", Nanoscale, Vol. 11, No. 3, pp. 1021-1028, 2019. https://doi.org/10.1039/C8NR08976K
  18. C. L. Carnes, J. Stipp, K. J. Klabunde, and J. Bonevich, "Synthesis, Characterization, and Adsorption Studies of Nanocrystalline Copper Oxide and Nickel Oxide", Langmuir, Vol. 18, No. 4, pp. 1352-1359, 2002. https://doi.org/10.1021/la010701p
  19. F. Li, C. Chen, F. Tan, C. Li, G. Yue, L. Shen, and W. Zhang, "Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode", Nanoscale Res. Lett., Vol. 9, No.1, pp. 1-5, 2014. https://doi.org/10.1186/1556-276X-9-1