DOI QR코드

DOI QR Code

A Study on the Measurement of Impedance in Animal Tissue Using Gold Electrodes

금 전극을 이용한 동물 조직 내 임피던스 측정연구

  • Kim, Min Soo (Dept. of Avia. Info. Com. Eng., Kyungwoon University) ;
  • Cho, Young Chang (Dept. of Avia. Info. Com. Eng., Kyungwoon University)
  • Received : 2021.08.16
  • Accepted : 2021.09.23
  • Published : 2021.09.30

Abstract

Bio-impedance measurement is a measurement device that can be used to obtain biometric information and diagnose skin diseases using convenience, low cost, and low cost devices. In this study, the bio-impedance was measured using a direct dry gold electrode and a simulation study through animal bio modeling to obtain biometric information in a biometric form. Impedance was measured by inserting electrodes into subcutaneous areas of animal tissue and applying frequencies of 100 uA, 1-100 kHz using a two-electrode method. As a result of the measurement, the resistance of the electrodes is measured high at 5 mm electrodes compared to 7.5 mm and 10 mm electrodes based on 5 mm electrodes. Based on the 5 mm electrode, an average difference of 1.49% was found for the 7.5 mm electrode in the total frequency range, and the impedance difference was confirmed to be 2.624% for the 10 mm electrode. In the future, the research results are expected to be valuable in designing and manufacturing electrodes for bio-inserted electrocardiogram sensors.

생체임피던스 측정법은 편리성, 저비용 및 저가의 장치를 이용하여 생체정보 획득 및 피부 병 진단 등에 사용 가능한 장치이다. 본 연구에서는 생체 삽입형으로 생체 정보를 획득하기 위해서 동물 생체 모델링을 통한 시뮬레이션 연구와 직접 제작한 건식용 금 전극을 이용하여 생체임피던스를 측정하였다. 동물 조직의 피하부위에 전극을 삽입하여 2 전극법으로 100 uA, 1-100 kHz 주파수를 인가하여 임피던스를 측정하였다. 측정결과 전극의 사이즈를 5 mm전극기준으로 7.5 mm, 10 mm전극과 비교하여 저항을 측정한 결과 5 mm 전극에서 높게 측정됨을 확인할 수 있다. 5 mm전극을 기준으로 7.5 mm 전극은 전체 주파수 범위에서 평균 1.49 %차이를 발견하였고, 10 mm 전극은 2.624 %로 임피던스가 차이남을 확인하였다. 향후, 연구결과는 생체 삽입형 심전도 센서 전극 설계 및 제작 등에 활용가치가 있을 것으로 사료된다.

Keywords

References

  1. A. Roy, S. Bhattacharjee et al., "Measurement of bioimpedance and application of Cole model to study the effect of moisturizing cream on human skin," AIMS Biophysics, vol.7, pp.362-379, 2020. DOI: 10.3934/biophy.2020025
  2. U. Kyle, I. Bosaeus, AD. De Lorenzo, et al. "Bioelectrical impedance analysis-part I: review of principles and methods," Clin Nutr., vol.23, pp.1226-1243, 2004. DOI: 10.1016/j.clnu.2004.06.004
  3. U. Birgersson, E. Birgersson, S. Ollmar, "Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements," J. Elec Bioimpedance, vol.3, pp.51-60, 2019. DOI: 10.5617/jeb.400
  4. R. Kusche, S. Kaufmann, and M. Ryschka, "Dry electrodes for bioimpedance measurements-design, characterization and comparison," IOP Biomed., Physics & Eng., Express, vol.5, No.1, 2019. DOI: 10.1088/2057-1976/aaea59
  5. X. Zhal, Y. Kinouchi et al., "A New Method for Noninvasive Measurement of Multilayer Tissue Conductivity and Structure Using Divided Electrodes," IEEE Trans. on Biomed., Eng., vol.51, no.2, pp.363-379, 2004. DOI: 10.1109/TBME.2003.820403
  6. A. Radomska et al., "Biocompatible ion selective electrode for monitoring metabolic activity during the growth and cultivation of human cells," Biosensors and Bioelectronics, vol.24, no.3, pp. 435-441, 2008. DOI: 10.1016/j.bios.2008.04.026