DOI QR코드

DOI QR Code

3D 프린팅 레진과 임시 수복용 레진의 열순환 처리 후 전단결합강도에 관한 연구

A study on the shear bond strength between 3D printed resin and provisional resin after thermal cycling

  • 임지훈 (단국대학교 치과대학 치과보철학교실) ;
  • 신수연 (단국대학교 치과대학 치과보철학교실)
  • Yim, Ji-Hun (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Shin, Soo-Yeon (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 투고 : 2021.06.14
  • 심사 : 2021.08.09
  • 발행 : 2021.09.30

초록

목적: 본 연구에서는 3D 프린팅 레진과 임시 수복용 레진의 열순환 처리에 따른 전단결합강도의 변화를 연구하고자 하였다. 연구 재료 및 방법: DLP 방식을 이용하여 3D 프린팅 레진으로 표본을 제작하였다. 표본은 상부에 부착한 임시 수복용 레진(PMMA, bis-acryl resin) 및 열순환 처리 횟수(대조군, 2,000, 3,000, 5,000회)에 따라 8개의 군으로 분류하였다. 만능 재료시험기 상에서 결합된 표본들의 전단결합강도를 측정하였다. 결과: 열순환 처리의 횟수가 증가함에 따라 3D 프린팅 레진에 대한 PMMA와 bis-acryl resin의 전단결합강도는 PMMA에서 3,000회와 5,000회 간을 제외하고 모두 감소하였다. PMMA 그룹에서는 3,000회 미만의 열순환 처리 횟수 간에서 유의한 전단결합강도의 차이를 보였으며(P < 0.05), 3,000회 이상의 열순환 처리 횟수 간에는 유의한 차이를 보이지 않았다(P > 0.05). Bis-acryl resin 그룹에서는 대조군과 2,000회 간, 대조군과 3,000회 간, 대조군과 5,000회 간의 열순환 처리에는 유의한 전단결합강도의 차이가 있었으며(P < 0.05), 2,000회와 3,000회 간, 3,000회와 5,000회 간에는 유의한 차이가 없었다(P > 0.05). 결론: 3D 프린팅 레진에 대한 임시 수복용 레진의 전단결합강도는 열순환 처리를 한 경우 결합강도가 낮아지는 경향을 보였다.

Purpose: In this study, we intended to study the change in bond strength according to the thermal cycling of provisional resin and 3D printed resin for making provisional restoration. Materials and Methods: Through DLP method, 3D printed resin powder was used to produce 3D printed resin samples. The samples were grouped into eight groups, according to types of provisional resin (PMMA, bis-acryl resin) which is to be bonded on the samples and numbers of thermal cycling (control, 2,000, 3,000, 5,000 cycles). Shear bond strength of the bonded samples was measured on the universal testing machine. Results: As the number of thermal cycling increased, the shear bond strength of PMMA and bis-acryl resin for 3D printed resins decreased except between 3,000 cycles and 5,000 cycles in PMMA groups. In the PMMA group, there were significant differences in shear bond strength between less number than 3,000 cycles (P < 0.05) and no significant differences between more number than 3,000 cycles (P > 0.05). In the bis-acryl resin group, there were significant differences in shear bond strength between control and 2,000 cycles, control and 3,000 cycles, and control and 5,000 cycles (P < 0.05), no significant difference between 2,000 and 3,000 cycles, between 3,000 and 5,000 cycles (P > 0.05). Conclusion: The shear bond strength between 3D printed resin and provisional resin tended to decrease after thermal cycling.

키워드

참고문헌

  1. Shillingburg HT, Hobo S, Whitsett LD. Provisional restorations. Fundamentals of Fixed Prosthodontics. 4th ed. Chicago; Quintessence Int; 1998. p. 225-56.
  2. Waerhaug J. Temporary restorations: advantages and disadvantages. Dent Clin North Am 1980;24:305-16. https://doi.org/10.1016/S0011-8532(22)02867-1
  3. Federick DR. The provisional fixed partial denture. J Prosthet Dent 1975;34:520-6. https://doi.org/10.1016/0022-3913(75)90039-6
  4. Tom TN, Uthappa MA, Sunny K, Begum F, Nautiyal M, Tamore S. Provisional restorations: an overview of materials used. J Adv Clin Res Insights 2016;3:212-4. https://doi.org/10.15713/ins.jcri.141
  5. Christensen GJ. Provisional restorations for fixed prosthodontics. J Am Dent Assoc 1996;127:249-52. https://doi.org/10.14219/jada.archive.1996.0177
  6. Burns DR, Beck DA, Nelson SK; Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 2003;90:474-97. https://doi.org/10.1016/S0022-3913(03)00259-2
  7. Astudillo-Rubio D, Delgado-Gaete A, Bellot-Arcis C, Montiel-Company JM, Pascual-Moscardo A, Almerich-Silla JM. Mechanical properties of provisional dental materials: a systematic review and meta-analysis. PLoS One 2018;13:e0193162. https://doi.org/10.1371/journal.pone.0193162
  8. Crispin BJ, Caputo AA. Color stability of temporary restorative materials. J Prosthet Dent 1979;42:27-33. https://doi.org/10.1016/0022-3913(79)90326-3
  9. Doray PG, Li D, Powers JM. Color stability of provisional restorative materials after accelerated aging. J Prosthodont 2001;10:212-6. https://doi.org/10.1111/j.1532-849X.2001.00212.x
  10. Nivedita S, Prithviraj DR. A comparative study to evaluate the marginal accuracy of provisional restorations fabricated by light polymerized resin and autopolymerized resin: a scanning electron microscope study. J Indian Prosthodont Soc 2006;6:122-7. https://doi.org/10.4103/0972-4052.29362
  11. Crivello JV, Reichmanis E. Photopolymer materials and processes for advanced technologies. Chem Mater 2014;26:533-48. https://doi.org/10.1021/cm402262g
  12. Kim YH, Jung BY, Han SS, Woo CW. Accuracy evaluation of 3D printed interim prosthesis fabrication using a CBCT scanning based digital model. PLoS One 2020;15:e0240508. https://doi.org/10.1371/journal.pone.0240508
  13. Son YT, Son K, Lee KB. Marginal and internal fit of interim crowns fabricated with 3D printing and milling method. J Dent Rehabil Appl Sci 2020;36:254-61. https://doi.org/10.14368/jdras.2020.36.4.254
  14. Kim SB, Kim NH, Kim JH, Moon HS. Evaluation of the fit of metal copings fabricated using stereolithography. J Prosthet Dent 2018;120:693-8. https://doi.org/10.1016/j.prosdent.2018.01.012
  15. Papacchini F, Toledano M, Monticelli F, Osorio R, Radovic I, Polimeni A, Garcia-Godoy F, Ferrari M. Hydrolytic stability of composite repair bond. Eur J Oral Sci 2007;115:417-24. https://doi.org/10.1111/j.1600-0722.2007.00475.x
  16. Galindo D, Soltys JL, Graser GN. Long-term reinforced fixed provisional restorations. J Prosthet Dent 1998;79:698-701. https://doi.org/10.1016/S0022-3913(98)70078-2
  17. Lim NK, Shin SY. Bonding of conventional provisional resin to 3D printed resin: the role of surface treatments and type of repair resins. J Adv Prosthodont 2020;12:322-8. https://doi.org/10.4047/jap.2020.12.5.322
  18. Liu Y, Ye H, Wang Y, Zhao Y, Sun Y, Zhou Y. Three dimensional analysis of internal adaptations of crowns cast from resin patterns fabricated using computer-aided design/computer-assisted manufacturing technologies. Int J Prosthodont 2018;31:386-93. https://doi.org/10.11607/ijp.5678
  19. Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent 2015;114:414-9. https://doi.org/10.1016/j.prosdent.2015.03.007
  20. Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: a review. Dent Mater 2019;35:825-46. https://doi.org/10.1016/j.dental.2019.02.026
  21. Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 2016;32:54-64. https://doi.org/10.1016/j.dental.2015.09.018
  22. Alharbi N, Osman RB, Wismeijer D. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology. Int J Prosthodont 2016;29:503-10. https://doi.org/10.11607/ijp.4835
  23. Park GS, Kim SK, Heo SJ, Koak JY, Seo DG. Effects of printing parameters on the fit of implant-supported 3D printing resin prosthetics. Materials (Basel) 2019;12:2533. https://doi.org/10.3390/ma12162533
  24. Elsaka SE. Bond strength of novel CAD/CAM restorative materials to self adhesive resin cement: the effect of surface treatments. J Adhes Dent 2014;16:531-40. https://doi.org/10.3290/j.jad.a33198
  25. Gilbert S, Keul C, Roos M, Edelhoff D, Stawarczyk B. Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: three different in vitro test methods. Clin Oral Investig 2016;20:227-36. https://doi.org/10.1007/s00784-015-1494-4
  26. Bahr N, Keul C, Edelhoff D, Eichberger M, Roos M, Gernet W, Stawarczyk B. Effect of different adhesives combined with two resin composite cements on shear bond strength to polymeric CAD/CAM materials. Dent Mater J 2013;32:492-501. https://doi.org/10.4012/dmj.2012-329
  27. Keul C, Martin A, Wimmer T, Roos M, Gernet W, Stawarczyk B. Tensile bond strength of PMMA- and composite-based CAD/CAM materials to luting cements after different conditioning methods. Int J Adhes Adhesiv 2013;46:122-7. https://doi.org/10.1016/j.ijadhadh.2013.06.003
  28. Ha SR, Kim SH, Lee JB, Han JS, Yeo IS. Improving shear bond strength of temporary crown and fixed dental prosthesis resins by surface treatments. J Mater Sci 2016;51:1463-75. https://doi.org/10.1007/s10853-015-9466-2
  29. da Costa TR, Serrano AM, Atman AP, Loguercio AD, Reis A. Durability of composite repair using different surface treatments. J Dent 2012;40:513-21. https://doi.org/10.1016/j.jdent.2012.03.001
  30. Yoshida K, Kamada K, Atsuta M. Effects of two silane coupling agents, a bonding agent, and thermal cycling on the bond strength of a CAD/CAM composite material cemented with two resin luting agents. J Prosthet Dent 2001;85:184-9. https://doi.org/10.1067/mpr.2001.113628
  31. Jeong KW, Kim SH. Influence of surface treatments and repair materials on the shear bond strength of CAD/CAM provisional restorations. J Adv Prosthodont 2019;11:95-104. https://doi.org/10.4047/jap.2019.11.2.95
  32. Ellakwa AE, Shortall AC, Burke FJ, Marquis PM. Effects of grit blasting and silanization on bond strengths of a resin luting cement to Belleglass HP indirect composite. Am J Dent 2003;16:53-7.
  33. Lise DP, Van Ende A, De Munck J, Vieira L, Baratieri LN, Van Meerbeek B. Microtensile bond strength of composite cement to novel CAD/CAM materials as a function of surface treatment and aging. Oper Dent 2017;42:73-81. https://doi.org/10.2341/15-263-L
  34. Lung CYK, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater 2012;28:467-77. https://doi.org/10.1016/j.dental.2012.02.009
  35. Lee J, Lee S. Evaluation of add-on methods for bis-acryl composite resin interim restorations. J Prosthet Dent 2015;114:594-601. https://doi.org/10.1016/j.prosdent.2015.02.020
  36. Albahri R, Yoon HI, Lee JD, Yoon S, Lee SJ. Shear bond strength of provisional repair materials bonded to 3D printed resin. J Dent Sci 2021;16:261-7. https://doi.org/10.1016/j.jds.2020.05.003
  37. Zhi L, Bortolotto T, Krejci I. Comparative in vitro wear resistance of CAD-CAM composite resin and ceramic materials. J Prosthet Dent 2016;115:199-202. https://doi.org/10.1016/j.prosdent.2015.07.011
  38. Flury S, Diebold E, Peutzfeldt A, Lussi A. Effect of artificial toothbrushing and water storage on the surface roughness and micromechanical properties of tooth-colored CAD-CAM materials. J Prosthet Dent 2017;117:767-74. https://doi.org/10.1016/j.prosdent.2016.08.034
  39. Marro FG, Mestra A, Jimenez-Pique E, Chintapalli R, Anglada M. Surface mechanical properties of advanced zirconia after hydrothermal exposure. IOP Conference Series Materials Science and Engineering 2012;31:012015. https://doi.org/10.1088/1757-899X/31/1/012015
  40. Morresi AL, D'Amario M, Capogreco M, Gatto R, Marzo G, D'Arcangelo C, Monaco A. Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater 2014;29:295-308. https://doi.org/10.1016/j.jmbbm.2013.09.013
  41. Gu HJ, Jun SK, Kim DA, Kim HW, Lee HH. Effect of the thermocycling on the mechanical properties of resin composite. Korean J Dent Mater 2008;35:155-64.
  42. Minami H, Hori S, Kurashige H, Murahara S, Muraguchi K, Minesaki Y, Tanaka T. Effects of thermal cycling on surface texture of restorative composite materials. Dent Mater J 2007;26:316-22. https://doi.org/10.4012/dmj.26.316
  43. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99. https://doi.org/10.1016/S0300-5712(98)00037-2
  44. Palla ES, Kontonasaki E, Kantiranis N, Papadopoulou L, Zorba T, Paraskevopoulos KM, Koidis P. Color stability of lithium disilicate ceramics after aging and immersion in common beverages. J Prosthet Dent 2018;119:632-42. https://doi.org/10.1016/j.prosdent.2017.04.031
  45. Torstenson B, Brannstrom M. Contraction gap under composite resin restorations: effect of hygroscopic expansion and thermal stress. Oper Dent 1988;13:24-31.
  46. Stawarczyk B, Basler T, Ender A, Roos M, Ozcan M, Hammerle C. Effect of surface conditioning with airborne-particle abrasion on the tensile strength of polymeric CAD/CAM crowns luted with self-adhesive and conventional resin cements. J Prosthet Dent 2012;107:94-101. https://doi.org/10.1016/S0022-3913(12)60031-6
  47. Piwowarczyk A, Lauer HC, Sorensen JA. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials. J Prosthet Dent 2004;92:265-73. https://doi.org/10.1016/j.prosdent.2004.06.027