DOI QR코드

DOI QR Code

개똥쑥 추출물의 항여드름 효능확인

Anti-acne Properties of Artemisia annua Extract In Vitro

  • 유지영 (바이오스펙트럼(주) 생명과학연구소) ;
  • 노경백 (바이오스펙트럼(주) 생명과학연구소) ;
  • 오세영 (바이오스펙트럼(주) 생명과학연구소) ;
  • 정용택 (바이오스펙트럼(주) 생명과학연구소) ;
  • 박덕훈 (바이오스펙트럼(주) 생명과학연구소) ;
  • 정은선 (바이오스펙트럼(주) 생명과학연구소)
  • 투고 : 2021.09.06
  • 심사 : 2021.09.28
  • 발행 : 2021.09.30

초록

여드름은 털피지샘단위(pilosebaceous unit)와 관련된 만성 염증 피부 질환으로, 여드름 병변에서는 피지 과다분비(hyperseborrhea)나 이상분비(dysseborrhea), 염증반응, 그리고 다른 피부상재균들에 비해 증가된 Cutibacterium acnes (C. acnes)로 인한 피부 미생물 균총의 불균형이 관찰된다. 이 연구는 개똥쑥 추출물(Artemisia annua extract: AAE)의 항여드름 효과를 확인한 것으로, 피부 미생물 균총의 균형유지와 관련된 항균효과와 염증반응의 억제, 과도한 피지 분비의 감소 측면에서 실험을 진행하였다. C. acnes와 Staphylococcus epidermidis(S. epidermidis)를 AAE와 공동배양 하였을 때, S. epidermidis의 성장률은 저해되지 않았지만 C. acnes의 성장률은 저해된 것을 확인하였다. 또한 AAE를 처리하여 배양한 C. acnes 배양배지를 세포에 처리하였을 때, 인터루킨-1β(IL-1β), 종양괴사인자-α(TNF-α)와 인터루킨-6(IL-6) 같은 사이토카인 분비의 감소와 TLR2 활성 억제도 확인하였다. 마지막으로 피지세포에 AAE를 처리한 결과, 팔미트산에 의해 유도된 피지형성을 감소시키는 것을 확인하였다. 이 결과들은 AAE가 다양한 타깃을 지닌 천연추출물로써 여드름의 주요 원인들인 C. acnes의 선택적 성장저해와 C. acnes로부터 유도되는 염증반응을 억제할 수 있으며, 과도한 피지형성을 감소시켜 결과적으로 여드름을 완화시키는 물질로 사용될 수 있다는 것을 제시한다.

Acne vulgaris is a chronic inflammatory skin disease related to pilosebaceous unit. In acne lesions, hyperseborrhea, dysseborrhea, inflammatory event, and an imbalance in skin microflora, particularly an increase in Cutibacterium acnes (C. acnes) colonization comparing to other bacteria, have been observed. The objective of this study was to evaluate anti-acne effects of Artemisia annua extract (AAE) on antibacterial activity related to preservation of the balance in skin microbiome, inhibition of inflammation, and reduction of excessive sebum production. When C. acnes and Staphylococcus epidermidis (S. epidermidis) were co-cultured in the presence of AAE, the reduction of C. acnes growth by AAE was greater than that of S. epidermidis. In addition, when C. acnes was cultured in a medium containing AAE (C. acnes AAE), levels of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 and toll-like receptors-2 activity were decreased in comparison with C. acnes cultured in a medium without AAE (C. acnes CM). Moreover, AAE significantly inhibited excessive sebum production induced by palmitic acid. These results suggest that AAE, as a natural extract with various targets, can inhibit selective growth of C. acnes and inflammatory reactions derived from C. acnes, which are the main causes of acne, and consequently can be used as a substance to alleviate acne by reducing excessive sebum formation.

키워드

참고문헌

  1. A. K. Asadi and A. Usman, The role of psychological stress in skin disease, J. Cutan. Med. Surg., 5(2), 140 (2001). https://doi.org/10.1007/BF02737869
  2. L. Verhulst and A. Goossens, Cosmetic components causing contact urticaria: A review and update, Contact Dermatitis, 75(6), 333 (2016). https://doi.org/10.1111/cod.12679
  3. S. R. Ellis, M. Nguyen, A. R. Vaughn, M. Notay, W. A. Burney, S. Sandhu, and R. K. Sivamani, The skin and gut microbiome and its role in common dermatologic conditions, Microorganisms, 7(11), 550 (2019). https://doi.org/10.3390/microorganisms7110550
  4. K. E. Kim, D. Cho, and H. J. Park, Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases, Life Sci., 152, 126 (2016). https://doi.org/10.1016/j.lfs.2016.03.039
  5. T. X. Cong, D. Hao, X. Wen, X. H. Li, G. He, and X. Jiang, From pathogenesis of acne vulgaris to anti-acne agents, Arch. Dermatol. Res., 311(5), 337 (2019). https://doi.org/10.1007/s00403-019-01908-x
  6. M. Fourniere, T. Latire, D. Souak, M. G. J. Feuilloley, and G. Bedoux, Staphylococcus epidermidis and Cutibacterium acnes: Two major sentinels of skin microbiota and the influence of cosmetics, Microorganisms, 8(11), 1752 (2020). https://doi.org/10.3390/microorganisms8111752
  7. A. L. Cogen, V. Nizet, and R. L. Gallo, Skin microbiota: A source of disease or defence?, Br. J. Dermatol., 158(3), 442 (2008). https://doi.org/10.1111/j.1365-2133.2008.08437.x
  8. A. L. Byrd, Y. Belkaid, and J. A. Segre, The human skin microbiome, Nat. R ev. Microbiol., 16(3), 143 (2018). https://doi.org/10.1038/nrmicro.2017.157
  9. E. A. Grice and J. A. Segre, The skin microbiome, Nat. Rev. Microbiol., 9(4), 244 (2013). https://doi.org/10.1038/nrmicro2537
  10. J. McLaughlin, S. Watterson, A. M. Layton, A. J. Bjourson, E. Barnard, and A. McDowell, Propionibacterium acnes and acne vulgaris: New insights from the integration of population genetic, multi-omic, biochemical and host-microbe studies, Microorganisms, 7(5), 128 (2019). https://doi.org/10.3390/microorganisms7050128
  11. B. Dreno, S. Pecastaings, S. Corvec, S. Veraldi, A. Khammari, and C. Roques, Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates, J. Eur. Acad. Dermatol. Venereol., 32(Suppl 2), 5 (2018). https://doi.org/10.1111/jdv.15043
  12. Y. Wang, S. Kuo, M. Shu, J. Yu, S. Huang, A. Dai, A. Two, R. L. Gallo, and C. M. Huang, Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris, Appl. Microbiol. Biotechnol., 98(1), 411 (2014). https://doi.org/10.1007/s00253-013-5394-8
  13. A. M. O'Neill and R. L. Gallo, Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris, Microbiome, 6(1), 177 (2018). https://doi.org/10.1186/s40168-018-0558-5
  14. J. L. Selway, T. Kurczab, T. Kealey, and K. Langlands, Toll-like receptor 2 activation and comedogenesis: Implications for the pathogenesis of acne, BMC Dermatol., 13, 10 (2013). https://doi.org/10.1186/1471-5945-13-10
  15. C. Mayslich, P. A. Grange, and N. Dupin, Cutibacterium acnes as an opportunistic pathogen: an update of its virulence-associated factors, Microorganisms, 9(2), 303 (2021). https://doi.org/10.3390/microorganisms9020303
  16. R. W. Clayton, K. Gobel, C. M. Niessen, R. Paus, M. A. M. Steensel, and X. Lim, Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis, Br. J. Dermatol., 181(4), 677 (2019). https://doi.org/10.1111/bjd.17981
  17. X. Feng, S. Cao, F. Qiu, and B. Zhang, Traditional application and modern pharmacological research of Artemisia annua L, Pharmacol. Ther., 216, 107650 (2020). https://doi.org/10.1016/j.pharmthera.2020.107650
  18. Y. Deng, Z. Liu, and Y. Geng, Anti-allergic effect of Artemisia extract in rats, Exp. Ther. Med., 12(2), 1130 (2016). https://doi.org/10.3892/etm.2016.3361
  19. J. F. S. Ferreira, D. L. Luthria, T. Sasaki, and A. Heyerick, Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer, Molecules, 15(5), 3135 (2010). https://doi.org/10.3390/molecules15053135
  20. W. S. Kim, W. J. Choi, S. W. Lee, W. J. Kim, D. C. Lee, U. D. Sohn, H. S. Shin, and W. Y. Kim, Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L, Korean J. Physiol. Pharmacol., 19(1), 21 (2015). https://doi.org/10.4196/kjpp.2015.19.1.21
  21. Y. Wang, M. S. Kao, J. Yu, S. Huang, S. Marito, R. L. Gallo, and C. M. Huang, A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis fermentation against Propionibacterium acnes, Int. J. Mol. Sci., 17(11), 1870 (2016). https://doi.org/10.3390/ijms17111870
  22. T. Kawasaki and T. Kawai, Toll-like receptor signaling pathways, Front. Immunol., 5, 461 (2014).
  23. M. Ottaviani, E. Camera, and M. Picardo, Lipid mediators in acne, Mediators Inflamm., 2010, 858176 (2010). https://doi.org/10.1155/2010/858176
  24. B. C. Melnik, Linking diet to acne metabolomics, inflammation, and comedogenesis: An update, Clin. Cosmet. Investig. Dermatol., 8, 371 (2015). https://doi.org/10.2147/CCID.S69135
  25. C. W. Choi, Y. Kim, J. E. Kim, E. Y. Seo, C. C. Zouboulis, J. S. Kang, S. W. Youn, and J. H. Chung, Enhancement of lipid content and inflammatory cytokine secretion in SZ95 sebocytes by palmitic acid suggests a potential link between free fatty acids and acne aggravation, Exp. Dermatol., 28(2), 207 (2019). https://doi.org/10.1111/exd.13855