Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF-2018R1D1A1B07043030).
References
- Arnold, M. L. 1997. Natural Hybridization and Evolution. Oxford University Press, New York, 228 pp.
- Brochmann, C., L. Borgen and O. E. Stabbetorp. 2000. Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae). Plant Systematics and Evolution 220: 77-92. https://doi.org/10.1007/BF00985372
- Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
- Francisco-Ortega, J., R. K. Jansen and A. Santos-Guerra. 1996. Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macronesian flora. Proceedings of the National Academy of Sciences of the United States of America 93: 4085-4090. https://doi.org/10.1073/pnas.93.9.4085
- Fuertes-Aguilar, J, M. F. Ray, J. Francisco-Ortega, A. Santos Guerra and R. K. Jansen. 2002. Molecular evidence from chloroplast and nuclear markers for multiple colonizations of Lavatera (Malvaceae) in the Canary islands. Systematic Botany 27: 74-83.
- Grant, V. 1981. Plant Speciation. 2nd ed. Columbia University Press, New York, 563 pp.
- Howarth, D. G. and D. A. Baum. 2005. Genealogical evidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodeniaceae) in the Hawaiian islands. Evolution 59: 948-961. https://doi.org/10.1111/j.0014-3820.2005.tb01034.x
- Jorgensen, T. H. and J. M. Olesen. 2001. Adaptive radiation of island plants: Evidence from Aeonium (Crassulaceae) of the Canary Islands. Perspectives in Plant Ecology, Evolution and Systematics 4: 29-42. https://doi.org/10.1078/1433-8319-00013
- Kadota, Y., H. Setoguchi, A. Soejima, T. Touma, T. Morita and K. Yonekura. 2017. Asteraceae. In Wild Flowers of Japan, Vol. 5. Convolvulaceae to Caprifoliaceae. Ohashi, H., Y. Kadota, H. Kihara, J. Murata and K. Yonekura (eds.), Heibonsha, Tokyo. Pp. 198-369. (in Japanese)
- Kilian, N., B. Gemeinholzer and H. W. Lack. 2009. Cichorieae. In Systematics, Evolution and Biogeography of Compositae. Funk, V. A., A. Susanna, T. F. Stuessy and R. J. Bayer (eds.), International Association for Plant Taxonomy, Vienna. Pp. 343-383.
- Kitamura, S. 1937. Genera Lactuca, Ixeris and Crepidiastrum. Acta Phytotaxonomica et Geobotanica 6: 235-238. (in Japanese)
- Kitamura, S. 1955. Compositae Japonicae. Pars Quarta. Memoirs of the College of Science, University of Kyoto, Series B 22: 77-126.
- Koyama, H. 1995. Asteraceae (Compositae). In Flora of Japan, Vol. 3b. Angiospermae, Dicotyledoneae, Sympetalae (b). Iwatsuki, K., T. Yamazaki, D. E. Boufford and H. Ohba (eds.), Kodansha, Tokyo. Pp. 1-170.
- Lee, T. B. 1969. Plant resources in Korea. Bulletin of Seoul National University (Biological Agriculture) 20: 158-159. (in Korean)
- Lee, W. T. 1996. Lineamenta Florae Koreae. Academy Publishing Co., Seoul, 1688 pp. (in Korean)
- Minh, B. Q., M. A. T. Nguyen and A. von Haeseler. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188-1195. https://doi.org/10.1093/molbev/mst024
- Nakamura, K., K.-F. Chung, C.-J. Huang, Y. Kono, G. Kokubugata and C.-I. Peng. 2012. Extreme habitats that emerged in the Pleistocene triggered divergence of weedy Youngia (Asteraceae) in Taiwan. Molecular Phylogenetics and Evolution 63: 486-499. https://doi.org/10.1016/j.ympev.2012.01.023
- Nguyen, L.-T., H. A. Schmidt, A. von Haeseler and B. Q. Minh. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274. https://doi.org/10.1093/molbev/msu300
- Ohashi, H. and K. Ohashi. 2007. Hybrids in Crepidiastrum (Asteraceae). Journal of Japanese Botany 82: 337-347.
- Ohwi, J. 1965. Flora of Japan. English edition. Smithsonian Institution, Washington, D.C., 1067 pp.
- Pak, J.-H. and S. Kawano. 1992. Biosystematic studies on the genus Ixeris and its allied genera (Compositae-Lactuceae) (IV): Taxonomic treatments and nomenclature. Memoirs of the Faculty of Science, Kyoto University, Series of Biololgy 15: 29-61.
- Peng, Y.-L., Y. Zhang, X.-F. Gao, L.-J. Tong, L. Li, R.-Y. Li, Z.-M. Zhu and J.-R. Xian. 2014. A phylogenetic analysis and new delimitation of Crepidiastrum (Asteraceae, tribe Cichorieae). Phytotaxa 159: 241-255. https://doi.org/10.11646/phytotaxa.159.4.1
- Rieseberg, L. H. 1997. Hybrid origins of plant species. Annual review of Ecology and Systematics 28: 359-389. https://doi.org/10.1146/annurev.ecolsys.28.1.359
- Saito, Y., M. Moller, G. Kokubugata, T. Katsuyama, W. Marubashi and T. Iwashina. 2006. Molecular evidence for repeated hybridization events involved in the origin of the genus × Crepidiastrixeris (Asteraceae) using RAPDs and ITS data. Botanical Journal of the Linnean Society 151: 333-343. https://doi.org/10.1111/j.1095-8339.2006.00513.x
- Seehausen, O. 2004. Hybridization and adaptive radiation. Trends in Ecology and Evolution 19: 198-207. https://doi.org/10.1016/j.tree.2004.01.003
- Trifinopoulos, J., L.-T. Nguyen, A. von Haeseler and B. Q. Minh. 2016. W-IQ-TREE: A fast online phylogenetic tool for Maximum likelihood analysis. Nucleic Acids Research 44: W232-W235. https://doi.org/10.1093/nar/gkw256