DOI QR코드

DOI QR Code

Taxonomic identity of Crepidiastrum ×nakaii recorded on Hongdo Island

홍도고들빼기의 분류학적 실체

  • Received : 2021.08.09
  • Accepted : 2021.09.11
  • Published : 2021.09.30

Abstract

The plant known as "Hong-do-go-deul-ppae-gi" on Hongdo Island, belonging to the genus Crepidiastrum, has been recorded as C. ×nakaii, a hybrid between C. denticulatum and C. platyphyllum. During a survey of the flora of Hongdo Island, we reexamined the taxonomic identity of "Hong-do-go-deul-ppae-gi". The morphological traits, geographical distribution, and internal transcribed spacer (ITS) sequences of "Hong-do-go-deul-ppae-gi" were compared to related species within the genus. A morphological examination revealed that the plant was similar to C. lanceolatum in that it has subshrub stems with caudex stout, 8 inner involucrals bracts, and 10 to 12 florets. In contrast, similarities to C. denticulatum were observed in terms of radical leaves deciduous in the flowering period, cauline leaves membranous with acute serrations, and beaked achenes. Furthermore, C. denticulatum and C. lanceolatum grew on Hongdo Island and nearby areas, but C. platyphyllum was not distributed in these areas. The results of morphological and distributional investigations revealed that the Hongdo Island plant should be regarded as C. ×muratagenii, a hybrid between C. denticulatum and C. lanceolatum, not C. ×nakaii, which is a hybrid between C. denticulatum and C. platyphyllum. However, the resolution of the ITS sequences was insufficient such that we could not separate the examined species.

고들빼기속에 속하는 홍도산 홍도고들빼기의 학명은 이고들빼기와 절영풀의 잡종인 Crepidiastrum ×nakaii로 기록되어 왔다. 홍도 식물상을 조사하는 과정에서 홍도고들빼기의 분류학적 실체를 재검토하였다. 이를 위해 홍도고들빼기의 형태적 특징과 지리적 분포 및 internal transcribed spacer (ITS) 염기서열을 고들빼기속 근연종들과 비교하였다. 형태적 특성 조사에서, 홍도고들빼기는 짧고 굵은 아관목성 줄기와 8개의 내총포편 및 10 내지 12개의 소화수를 갖는 점에서 갯고들빼기와 유사한 반면, 개화기에 시드는 뿌리잎과 막질로 예 거치인 줄기잎 및 부리가 있는 수과 형태 등에서는 이고들빼기와 유사하였다. 한편 이고들빼기와 갯고들빼기는 홍도와 인근 섬 지역에 자라지만, 절영풀은 분포하지 않는다. 이러한 형태 및 분포 조사결과, 홍도고들빼기의 학명은 이고들빼기와 절영풀의 잡종인 C. ×nakaii가 아니라, 이고들빼기와 갯고들빼기의 잡종인 C. ×muratagenii로 판단된다. 하지만, ITS 염기서열은 조사된 종들을 구별할 수 있는 해상력을 보여주지 못하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2018R1D1A1B07043030).

References

  1. Arnold, M. L. 1997. Natural Hybridization and Evolution. Oxford University Press, New York, 228 pp.
  2. Brochmann, C., L. Borgen and O. E. Stabbetorp. 2000. Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae). Plant Systematics and Evolution 220: 77-92. https://doi.org/10.1007/BF00985372
  3. Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  4. Francisco-Ortega, J., R. K. Jansen and A. Santos-Guerra. 1996. Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macronesian flora. Proceedings of the National Academy of Sciences of the United States of America 93: 4085-4090. https://doi.org/10.1073/pnas.93.9.4085
  5. Fuertes-Aguilar, J, M. F. Ray, J. Francisco-Ortega, A. Santos Guerra and R. K. Jansen. 2002. Molecular evidence from chloroplast and nuclear markers for multiple colonizations of Lavatera (Malvaceae) in the Canary islands. Systematic Botany 27: 74-83.
  6. Grant, V. 1981. Plant Speciation. 2nd ed. Columbia University Press, New York, 563 pp.
  7. Howarth, D. G. and D. A. Baum. 2005. Genealogical evidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodeniaceae) in the Hawaiian islands. Evolution 59: 948-961. https://doi.org/10.1111/j.0014-3820.2005.tb01034.x
  8. Jorgensen, T. H. and J. M. Olesen. 2001. Adaptive radiation of island plants: Evidence from Aeonium (Crassulaceae) of the Canary Islands. Perspectives in Plant Ecology, Evolution and Systematics 4: 29-42. https://doi.org/10.1078/1433-8319-00013
  9. Kadota, Y., H. Setoguchi, A. Soejima, T. Touma, T. Morita and K. Yonekura. 2017. Asteraceae. In Wild Flowers of Japan, Vol. 5. Convolvulaceae to Caprifoliaceae. Ohashi, H., Y. Kadota, H. Kihara, J. Murata and K. Yonekura (eds.), Heibonsha, Tokyo. Pp. 198-369. (in Japanese)
  10. Kilian, N., B. Gemeinholzer and H. W. Lack. 2009. Cichorieae. In Systematics, Evolution and Biogeography of Compositae. Funk, V. A., A. Susanna, T. F. Stuessy and R. J. Bayer (eds.), International Association for Plant Taxonomy, Vienna. Pp. 343-383.
  11. Kitamura, S. 1937. Genera Lactuca, Ixeris and Crepidiastrum. Acta Phytotaxonomica et Geobotanica 6: 235-238. (in Japanese)
  12. Kitamura, S. 1955. Compositae Japonicae. Pars Quarta. Memoirs of the College of Science, University of Kyoto, Series B 22: 77-126.
  13. Koyama, H. 1995. Asteraceae (Compositae). In Flora of Japan, Vol. 3b. Angiospermae, Dicotyledoneae, Sympetalae (b). Iwatsuki, K., T. Yamazaki, D. E. Boufford and H. Ohba (eds.), Kodansha, Tokyo. Pp. 1-170.
  14. Lee, T. B. 1969. Plant resources in Korea. Bulletin of Seoul National University (Biological Agriculture) 20: 158-159. (in Korean)
  15. Lee, W. T. 1996. Lineamenta Florae Koreae. Academy Publishing Co., Seoul, 1688 pp. (in Korean)
  16. Minh, B. Q., M. A. T. Nguyen and A. von Haeseler. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188-1195. https://doi.org/10.1093/molbev/mst024
  17. Nakamura, K., K.-F. Chung, C.-J. Huang, Y. Kono, G. Kokubugata and C.-I. Peng. 2012. Extreme habitats that emerged in the Pleistocene triggered divergence of weedy Youngia (Asteraceae) in Taiwan. Molecular Phylogenetics and Evolution 63: 486-499. https://doi.org/10.1016/j.ympev.2012.01.023
  18. Nguyen, L.-T., H. A. Schmidt, A. von Haeseler and B. Q. Minh. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274. https://doi.org/10.1093/molbev/msu300
  19. Ohashi, H. and K. Ohashi. 2007. Hybrids in Crepidiastrum (Asteraceae). Journal of Japanese Botany 82: 337-347.
  20. Ohwi, J. 1965. Flora of Japan. English edition. Smithsonian Institution, Washington, D.C., 1067 pp.
  21. Pak, J.-H. and S. Kawano. 1992. Biosystematic studies on the genus Ixeris and its allied genera (Compositae-Lactuceae) (IV): Taxonomic treatments and nomenclature. Memoirs of the Faculty of Science, Kyoto University, Series of Biololgy 15: 29-61.
  22. Peng, Y.-L., Y. Zhang, X.-F. Gao, L.-J. Tong, L. Li, R.-Y. Li, Z.-M. Zhu and J.-R. Xian. 2014. A phylogenetic analysis and new delimitation of Crepidiastrum (Asteraceae, tribe Cichorieae). Phytotaxa 159: 241-255. https://doi.org/10.11646/phytotaxa.159.4.1
  23. Rieseberg, L. H. 1997. Hybrid origins of plant species. Annual review of Ecology and Systematics 28: 359-389. https://doi.org/10.1146/annurev.ecolsys.28.1.359
  24. Saito, Y., M. Moller, G. Kokubugata, T. Katsuyama, W. Marubashi and T. Iwashina. 2006. Molecular evidence for repeated hybridization events involved in the origin of the genus × Crepidiastrixeris (Asteraceae) using RAPDs and ITS data. Botanical Journal of the Linnean Society 151: 333-343. https://doi.org/10.1111/j.1095-8339.2006.00513.x
  25. Seehausen, O. 2004. Hybridization and adaptive radiation. Trends in Ecology and Evolution 19: 198-207. https://doi.org/10.1016/j.tree.2004.01.003
  26. Trifinopoulos, J., L.-T. Nguyen, A. von Haeseler and B. Q. Minh. 2016. W-IQ-TREE: A fast online phylogenetic tool for Maximum likelihood analysis. Nucleic Acids Research 44: W232-W235. https://doi.org/10.1093/nar/gkw256