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PRICING VULNERABLE POWER OPTION UNDER A CEV

DIFFUSION

Mijin Ha, Donghyun Kim, and Ji-Hun Yoon∗

Abstract. In the over-the-counter market, option’s buyers could have a

problem for default risk caused by option’s writers. In addition, many par-

ticipants try to maximize their benefits obviously in investing the financial
derivatives. Taking all these circumstances into consideration, we deal with

the vulnerable power options under a constant elasticity variance (CEV)

model. We derive an analytic pricing formula for the vulnerable power
option by using the asymptotic analysis, and then we verify that the ana-

lytic formula can be obtained accurately by comparing our solution with

Monte-Carlo price. Finally, we examine the effect of CEV on the option
price based on the derived solution.

1. Introduction

Options are financial derivatives, which mean the right to buy or sell an
underlying asset at a specified price at or within an expiration date. Generally,
traditional options(or vanilla options) include two widely used options, which
one is European option, and another one is American option. European options
allow the right to be exercised only at the maturity date and American options
can be exercised at any time within the expiration date.

Before 1970s, the evaluation of the option fair price was very challenging
because it really needed advanced mathematical tools. In particular, it was
very hard for many researches to predict the market’s behavior. Since Black and
Scholes [1] has proposed firstly the geometric Brownian motions, and applied
it to theory of option’s pricing after 1970s, the transaction amount of many
derivatives had soared and a lot of traders could do business with these contracts
safely.

However, this does not take into account the counterparty risk that the op-
tion’s writer does not carry out the contractual obligation with the option’s
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holder in the over-the counter market. Actually, after the recent global financial
crisis, there have been several studies of the financial derivatives considering the
credit default risk. The option exposed to the default risk of the option writer
is called a ’vulnerable option’. The model dynamics of a vulnerable option is
constructed by the simultaneous consideration of the value of the underlying
asset and the market value of the option writer. Johnson and Stulz [7] derived
the pricing of European-style vulnerable options. Klein [9] proposed an ana-
lytic solution for the pricing of vulnerable options under Black-Scholes model,
taking account of the correlation between the underlying asset of the option
and the credit risk of the counterparty. Hung and Liu [6] examined the pric-
ing of vulnerable options based on an incomplete market. Yoon and Kim [14]
found European-style vulnerable options under not only constant interest rates
but also stochastic interest rates and Jeon et al. [8] studied the pricing of vul-
nerable path-dependent options, such as vulnerable barrier, vulnerable double
barrier, and vulnerable lookback options by utilizing double Mellin transforms
techniques.

Recently, as the modern financial market have developed, many contractors
desire to maximize their profits from the financial derivatives. It implies that the
supply for other derivatives have been increasing nowadays. Then, the following
questions would be raised: ”In the OCT market, how can we maximize the profit
of the buyer?” The answer is: the power option with vulnerable model.
The power options are ones to pay compensation based on the price of the
underlying asset with a positive integer index. Heynen and Kat [4] derived
closed solution of a general power put option and dealt with hedging problems
under the Black-Scholes model. Zhang et al. [15] investigated the evaluation
of the power options for the underlying asset that, unlike the Black Scholes’
environment, follow an unspecified stochastic differential equation.

In this paper, developing the vulnerable power option that we mentioned
above, we present a pricing formula of vulnerable power options under a constant
elasticity of volatility (CEV) diffusion. The CEV model introduced by Cox [2]
is one of local volatility model. This model has some advantages to capture
the skewness of the volatility and leverage effects. Especially, Park and Kim
[12] presented the asymptotic expansion method to derive the option values
under CEV model. By applying the asymptotic expansion method stated in
Park and Kim [12] and the method of the change of variable, we obtain the
analytic option pricing formula for the vulnerable power option under CEV
model. Moreover, we verify the accuracy of option’s formula using the Monte-
Carlo methods according to the number of simulations. With this solution,
we examine the influence of several parameters including CEV factors on the
option.

The rest of the paper consists of as follows. In Section 2, we construct the
risk-neutral underlying asset model and the payoff for the European vulnerable
power option. Then, we derive the partial differential equations (PDEs) for the
option. Section 3 contains the main theorems for the pricing formula of the



PRICING VULNERABLE POWER OPTION UNDER A CEV DIFFUSION 555

vulnerable power option with CEV diffusion. Based on Section 3, in Section 4,
we use the solution obtained by the Monte-Carlo simulation to verify the pricing
accuracy and investigate the price impact for several parameters on the option.
Finally, Section 5 provides the concluding remarks and future works.

2. Model formulation

In the probability space (Ω,F ,P∗) with a filtration {Ft : 0 ≤ t ≤ T} gener-
ated by standard Brownian motions W x∗

t and W y∗
t , under the risk-neutral prob-

ability measure, we consider the following stochastic differential equations(SDEs)

dXt = rXtdt+ σxX
θ
2
t dW x∗

t ,

dYt = rYtdt+ σyYtdW
y∗
t ,

(2.1)

where the constant r is an interest rate, the parameter θ is an elasticity, and
σx and σy are volatilities of the Xt and Yt, respectively. Under the equivalent
martingale measure P∗, the option price is given by

P (t, x, y) = E∗
[
e−r(T−t)h(XT , YT )

∣∣∣∣Xt = x, Yt = y

]
.(2.2)

By the Feynman-Kac formula (See Øksendal [11]), the option’s price P (t, x, y)
in (2.2) yields the following PDE:

Pt +
σ2
x

2
xθPxx +

σ2
y

2
y2Pyy + ρσxσyx

θ
2 yPxy + r (xPx + yPy − P ) = 0,

P (T, x, y) = h(XT , YT )

(2.3)

on the domain {(t, x, y) : t ∈ [0, T ), x ∈ (0,∞), y ∈ (0,∞)}, where the payoff
function h(XT .YT ) is given by

h(XT , YT ) = (Xc
T −K)+

(
1{YT≥D∗} + 1{YT<D∗}

(1− α)YT
D

)
, c ∈ N,

where K is the exercise price and D∗ is the fixed default boundary. Also, D
means the overall liability of the option’s writer, which is greater than D∗ and
is an additional liability arising from the possibility that the counterparty will
retain the contract even if the market value of YT at expiration T is less than
D∗. The deadweight costs α arising from bankruptcy or reorganization of the
company are expressed as a percentage of the value of the option writer’s asset.
At maturity T , if the option issuer’s market value YT is equal to or greater than
D∗, all payments will be paid. However, if the YT is less than D∗, an amount

of (1−α)YT
D of the total payment will only be paid.
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3. Price approximation

If we define the differential operator L by L = ∂
∂t + 1

2σ
2
xx

θ ∂2

∂x2 + 1
2σ

2
yy

2 ∂2

∂y2 +

ρσxσyx
θ
2 y ∂2

∂x∂y + r
(
x ∂
∂x + y ∂

∂y − I
)

, where I is an identity operator, then we

can rewrite PDE (2.3) as follows:{
LP = 0 in [0, T )× R≥0 × R≥0
P (T, x, y) = h(x, v) on {t = T}

(3.1)

To solve the PDE (3.1), we assume that P has an asymptotic expansion with
respect to ε (0 < ε� 1) as follows:

P =

∞∑
n=0

εnPn = P0 + εP1 + ε2P2 + ε3P3 + · · · .(3.2)

Here, if the elasticity θ is equal to 2, then (2.1) is the Black-Scholes model.
Additionally, if θ is greater than 2, the inverse leverage effect occurs in the
market. From the empirical studies researed by Geman and Shih [3], they said
it is common that the elasticity parameter θ is less than 2 in the stock market
and also, they suggested the fact that the commodity’s movement (e.g. copper
and gold) of the financial market is well described when the parameter θ is
greater than 2. In this paper, reflecting the situation of the equity market, we
assume that θ is less than 2.

Theorem 3.1. Suppose that the vulnerable power call option price P (t, x, y)
has an aymptotic expansion with respect to ε as P (t, x, y) =

∑∞
n=0 ε

nPn(t, x, y)
for 0 < ε� 1. Then, we obtain the following hierarchy system of PDEs:

LP0(t, x, y) = 0,(3.3)

LP1(t, x, y) =
1

2
σ2
xx

2(lnx)
∂2P0

∂x2
+

1

2
ρσxσyxy(lnx)

∂2P0

∂x∂y
,(3.4)

· · ·
LPn(t, x, y) = gn(t, x, y), n ≥ 1,(3.5)

where

gn(t, x, y) =
1

2
σ2
xx

2
n−1∑
k=0

(−1)n−k+1(lnx)n−k

(n− k)!

∂2Pk
∂x2

+ ρσxσyxy

n−1∑
k=0

(−1)n−k+1(lnx)n−k

2n−k(n− k)!

∂2Pk
∂x∂y

(3.6)

with P0(T, x, y) = h(x, y) and the terminal condition of Pn described by Pn(T, x, y) =
0 for n ≥ 1.

Proof. Referring to Kim et al. [10], we put θ by θ = 2− ε and then plug it into
LP = 0 given in (3.1), and using Taylor expansions of x2−ε and x1−

ε
2 , then we
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obtain the following equation

∂P

∂t
+

1

2
σ2
xx

2
∞∑
n=0

(
εn

(−1)n(lnx)n

n!

)
∂2P

∂x2
+

1

2
σ2
yy

2 ∂
2P

∂y2

+ ρσxσyxy

∞∑
n=0

(
εn

(−1)n(lnx)n

2nn!

)
∂2P

∂x∂y
+ r

(
x
∂P

∂x
+ y

∂P

∂y
− P

)
= 0.

By applying the asymptotic expansion (3.2) to the above PDE, we have the
following equation

∂t

∞∑
n=0

εnPn(t, x, y) +
σ2
x

2
x2
∞∑
n=0

(
εn

(−1)n(lnx)n

n!

)
∂xx

∞∑
n=0

εnPn(t, x, y)

+
σ2
y

2
y2∂yy

∞∑
n=0

εnPn(t, x, y) + ρσxσyxy

∞∑
n=0

(
εn

(−1)n(lnx)n

2nn!

)
∂xy

∞∑
n=0

εnPn(t, x, y)

+ r

(
x∂x

∞∑
n=0

εnPn(t, x, y) + y∂y

∞∑
n=0

εnPn(t, x, y)−
∞∑
n=0

εnPn(t, x, y)

)
= 0.

Now, for n ≥ 0, in the above PDE, we can classify and rearrange the PDE in
terms of ε term as following manner:

• The zero order term : We can have the following PDE

LP0 = 0.(3.7)

• The term of order ε : We can have the following PDE

LP1 =
1

2
σ2
xx

2(lnx)
∂2P0

∂x2
+

1

2
ρσxσyxy(lnx)

∂2P0

∂x∂y
.(3.8)

• The term of order ε2 : We can have the following PDE

LP2 = −1

4
σ2
xx

2(lnx)2
∂2P0

∂x2
+

1

2
σ2
xx

2(lnx)
∂2P1

∂x2

− 1

8
ρσxσyxy(lnx)2

∂2P0

∂x∂y
+

1

2
ρσxσyxy(lnx)

∂2P1

∂x∂y
.

(3.9)

By using the mathematical induction, we obtain the following equation in term
of order εn.

• The term of order εn :

LPn =
1

2
σ2
xx

2
n−1∑
k=0

(−1)n−k+1(lnx)n−k

(n− k)!

∂2Pk
∂x2

+ ρσxσyxy

n−1∑
k=0

(−1)n−k+1(lnx)n−k

2n−k(n− k)!

∂2Pk
∂x∂y

, gn(t, x, y)

(3.10)
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The proof of (3.10) is presented by Kim et al. [10]. So, we can obtain the desired
result. �

Now, in order to find the explicit-closed solution of Pn for n ≥ 0 given by
(3.3)-(3.5),most of all, we consider the following Lemma 3.1. Lemma 3.1 presents
the solution of the PDE (3.3) with the terminal condition P0(T, x, y) = h(x, y).

Lemma 3.1. The vulnerable Black-Scholes price P0(t, x, y) is given by

P0(t, x, y) = xce
(c−1)

(
r+

cσ2x
2

)
(T−t)

N2(a1, a2; ρ)− e−r(T−t)KN2(b1, b2; ρ)

(3.11)

+ δy
(
xcec(r+ρσxσy)(T−t)N2(c1, c2;−ρ)−KN2(d1, d2;−ρ)

)
,

where N2 is the bivariate normal cumulative distribution function defined by

N2(n1, n2, ρ) =
1

2π
√

1− ρ2

∫ n1

−∞

∫ n2

−∞
exp

(
−p

2 − 2ρpq + q2

2(1− ρ2)

)
dpdq

and

a1 = a1(t, x) =
ln
(

x
K1/c

)
+ [r + (c− 1

2 )σ2
x](T − t)

σx
√
T − t

,

a2 = a2(t, y) =
ln
(
y
D∗

)
+ (r − σ2

y

2 + cρσxσy)(T − t)
σy
√
T − t

,

b1 = b1(t, x) =
ln
(

x
K1/c

)
+ (r − σ2

x

2 )(T − t)
σx
√
T − t

,

b2 = b2(t, y) =
ln
(
y
D∗

)
+ (r − σ2

y

2 )(T − t)
σy
√
T − t

,

c1 = c1(t, x) =
ln
(

x
K1/c

)
+ (r + (c− 1

2 )σ2
x + ρσxσy)(T − t)

σx
√
T − t

,

c2 = c2(t, y) = −
ln
(
y
D∗

)
+ (r +

σ2
y

2 + cρσxσy)(T − t)
σy
√
T − t

,

d1 = d1(t, x) =
ln
(

x
K1/c

)
+ (r − σ2

x

2 + ρσxσy)(T − t)
σx
√
T − t

,

d2 = d2(t, y) = −
ln
(
y
D∗

)
+ (r +

σ2
y

2 )(T − t)
σy
√
T − t

,

δ ,
1− α
D

.

Proof. Refer to Ha et al. [5]. �



PRICING VULNERABLE POWER OPTION UNDER A CEV DIFFUSION 559

Next, to solve the solution of Pn for n ≥ 1 described by (3.4) and (3.5), we
have the following theorem.

Theorem 3.2. For all n ≥ 1, we have the derivation of Pn as follows:

Pn(t, x, y) = exp (φ1s1(y) + φ2s2(x, y) + φ3τ)W (τ, s∗1, s
∗
2),(3.12)

where

W (τ, s∗1, s
∗
2) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

F (τ − ξ1, s∗1 − ξ2, s∗2 − ξ3)g̃n(τ, ξ2, ξ3)dξ3dξ2dξ1,

F (τ, s∗1, s
∗
2) =

1

4πτ
exp

(
− (s∗1)2 + (s∗2)2

4τ

)
,

g̃n(τ, ξ2, ξ3) = − exp
(
φ1
√
ψ2ξ2 + φ2

√
ψ4ξ3 + φ3τ

)
· gn

(
T − τ, exp

(
σx
σ2
y

√
ψ2ξ2 −

√
ψ4ξ3
σy

)
, exp

(√
ψ2ξ2
ρσy

))
,

s1(y) = ρσy ln y, s2(x, y) = ρσx ln y − σy lnx, τ = T − t,

φ1 = − ψ1

2ψ2
, φ2 = − ψ3

2ψ4
, φ3 = − ψ2

1

4ψ2
− ψ2

3

4ψ4
− r,

s∗1(y) =
s1(y)√
ψ2

, s∗2(x, y) =
s2(x, y)√

ψ4

,

ψ1 = rρσy −
1

2
ρσ3

y, ψ2 =
1

2
ρ2σ4

y, ψ3 =
1

2
σ2
xσy − rσy −

1

2
ρσxσ

2
y + rρσx,

ψ4 =
1

2
σ2
xσ

2
y(1− ρ), ψ5 = σ2

yAB + ρσxσyAC.

Proof. From (3.5) and (3.6), and the terminal condition of Pn, Pn(t, x, y) can
be given by the solution of the following nonhomogeneous final value problem{

LPn = gn(t, x, y),

Pn(T, x, y) = 0.
(3.13)

To solve the PDE (3.13), we need to the change of variables as follows:

s1 = A ln y,

s2 = B ln y + C lnx,

τ = T − t,
Pn(t, x, y) = V (τ, s1, s2),

(3.14)

where, A, B, and C are some possitive constants. By applying the chain rule,
we can obtain the following equations.
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∂tPn = −∂τV,

∂xPn =
C

x
∂s2V,

∂2xxPn =
1

x2
(
C2∂2s2s2V − C∂s2V

)
,

∂yPn =
1

y
(A∂s1V +B∂s2V ) ,

∂2yyPn =
1

y2
(
−A∂s1V +A2∂2s1s1V + 2AB∂2s1s2V −B∂s2V +B2∂2s2s2V

)
,

∂2xyPn =
1

xy

(
AC∂2s1s2V +BC∂2s2s2V

)
.

(3.15)

Substituting (3.15) into (3.13), LPn = gn(t, x, y) from (3.13) leads to

− ∂τV +

(
rA− 1

2
σ2
yA

)
∂s1V +

1

2
σ2
yA

2∂2s1V

+

(
−1

2
σ2
xC −

1

2
σ2
yB + rB + rC

)
∂s2V

+

(
1

2
σ2
xC

2 +
1

2
σ2
yB

2 + ρσxσyBC

)
∂2s2V

+
(
σ2
yAB + ρσxσyAC

)
∂2s1s2V − rV

= gn(t, x, y).

(3.16)

For convenience, let us define some equations from (3.16) as follows.

ψ1 = rρσy −
1

2
ρσ3

y, ψ2 =
1

2
ρ2σ4

y, ψ3 =
1

2
σ2
xσy − rσy −

1

2
ρσxσ

2
y + rρσx,

ψ4 =
1

2
σ2
xσ

2
y(1− ρ), ψ5 = σ2

yAB + ρσxσyAC,

W = exp{−(φ1s1 + φ2s2 + φ3τ)}V (τ, s1, s2).

Then, (3.16) becomes

−∂τV + ψ1∂s1V + ψ2∂
2
s1s1V + ψ3∂s2V

+ψ4∂
2
s2s2V + ψ5∂

2
s1s2V − rV = gn(t, x, y).

(3.17)
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Again, using the chain rule on (3.17), we yields

∂τV = (φ3W + ∂τW ) eφ1s1+φ2s2+φ3τ ,

∂s1V = (φ1W + ∂s1W ) eφ1s1+φ2s2+φ3τ ,

∂2s1V =
(
φ21W + 2φ1∂s1W + ∂2s1W

)
eφ1s1+φ2s2+φ3τ ,

∂s2V = (φ2W + ∂s2W ) eφ1s1+φ2s2+φ3τ ,

∂2s2V =
(
φ22W + 2φ2∂s2W + ∂2s2W

)
eφ1s1+φ2s2+φ3τ ,

∂2s1s2V =
(
φ1φ2W + φ1∂s2W + φ2∂s1W + ∂2s1s2W

)
eφ1s1+φ2s2+φ3τ .

(3.18)

Thus, substituting (3.18) into (3.17), (3.18) leads to

− (φ3W + ∂τW ) + ψ1 (φ1W + ∂s1W )

+ ψ2

(
φ21W + 2φ1∂s1W + ∂2s1W

)
+ ψ3 (φ2W + ∂s2W ) + ψ4

(
φ22W + 2φ2∂s2W + ∂2s2W

)
+ ψ5

(
φ1φ2W + φ1∂s2W + φ2∂s1W + ∂2s1s2W

)
− rW

= gn(t, x, y)e−(φ1s1+φ2s2+φ3τ).

(3.19)

Meanwhile, in order for (3.19) to be the 2-dimensional heat equation, W
term, Ws1 term, Ws2 term and Ws1s2 term must be zero. In other words,

W term : −φ3 + ψ1φ1 + ψ2φ
2
1 + ψ3φ2 + ψ4φ

2
2 − r = 0,

Ws1 term : ψ1 + 2ψ2φ1 = 0,

Ws2 term : ψ3 + 2ψ4φ2 = 0,

Ws1s2 term : σ2
yAB + ρσxσyAC = 0.

From W , Ws1 and Ws2 terms, we obtain the following constant values φ1, φ2
and φ3:

φ1 = − ψ1

2ψ2
, φ2 = − ψ3

2ψ4
, φ3 = − ψ2

1

4ψ2
− ψ2

3

4ψ4
− r,

and if we set positive constant valuesB and C byB = ρσx and C = −σy,respectively,
then PDE (3.19) is changed into the 2-dimensional heat equation given by

∂W

∂τ
= ψ2

∂2W

∂s21
+ ψ4

∂2W

∂s22
− gn(t, x, y)e−(φ1s1+φ2s2+φ3τ)

with the initial condition is W (0, s1, s2) = 0.
Now, under the transformation s∗1(y) = s1(y)/

√
ψ2 and s∗2(x, y) = s2(x, y)/

√
ψ4,

the Duhamel’s principle can be used to find the fundamental solution of 2-
dimensional heat equation. Hence, fromW = exp{−(φ1s1+φ2s2+φ3τ)}V (τ, s1, s2)
and V (τ, s1, s2) = Pn, we obtain the desired results. �
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4. Numerical results

This section contains two folds: Firstly, we have to consider the accuracy
of the solution P in (3.2). As shown in Kim et al. [10], the accuracy of the
approximation of P is described by

|P − (P0 + εP1)| = O(ε2). (4.1)

So, for numerical experiments, we use the following approximated price

P0(t, x, y) + εP1(t, x, y) := P̃ (t, x, y) ≈ P (t, x, y). (4.2)

Now, to verify the accuracy of the approximated solution (4.1), we compare the
results of Monte–Carlo simulation using the stochastic dynamics (2.1) with the
pricing formula presented in (4.1). we take the parameters as follows:

X0 = x = K = 1, Y0 = y = 100, r = 2%, D = D∗ = 85,

ρ = 0.3, σx = σy = 0.2, T − t = 1, ε = 0.05 and c = 3.

Secondly, we investigate the impact of the elasticity θ on the underlying asset
price for the given parameter c ∈ N.

Table 1 and Table 2 show the results of Monte-Carlo price and option’s price
P̃ in (4.2) with respect to the parameter θ = 1.95 or θ = 2.05. In two tables,
we can notice that the difference between the Monte–Carlo solution PMC and
the P̃ goes to 0 as the number of simulation increases. So, one can observe that
our solution given in P̃ in (4.2) is accurately derived in terms of the elasticity
parameters θ = 1.95 and θ = 2.05.

In addition, we examine the behaviors of the option’s values regarding the
elasticity parameter θ. Figure 1(a) and Figure 1(b) show the price changes of P̃
for given elasticity parameter θ = 1.95 or θ = 2.1, respectively. One can notice
that the approximated price P̃ increases as the underlying asset price increases.
Furthermore, the larger c, the greater the option price.

Table 3 represents the values of the vulnerable power options in terms of the
CEV parameter θ ∈ {1.9, 1.95, 2.05, 2.1} and the power index c ∈ {1, 2, 3}. In
this table, we can find out the fact that the option’s price increase as the power
index c increases with respect to the fixed elasticity θ. However, the influence
of the elasticity parameter θ on the option price is not sensitive to that of the
power index c.

Figure 2 displays the sensitivity of θ against fixed c ∈ {1, 2, 3, 4}. From the
Figure 2(a)–2(d), we can see that the effect of c is much more significant than
that of θ on the option price.
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# of simulations PMC P̃ |PMC − P̃ |
10,000 0.3403 0.3436 0.0033
20,000 0.3417 0.3436 0.0019
30,000 0.3423 0.3436 0.0013

Table 1. Monte-Carlo simulation results (c = 3 and θ = 1.95)

# of simulations PMC P̃ |PMC − P̃ |
10,000 0.3380 0.3441 0.0061
20,000 0.3402 0.3441 0.0039
30,000 0.3437 0.3441 0.0004

Table 2. Monte-Carlo simulation results (c = 3 and θ = 2.05)
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Figure 1. Value of P̃ against the underlying asset price for
the given θ ∈ {1.95, 2.1}.

θ = 1.9 θ = 1.95 θ = 2.05 θ = 2.1

c = 1 0.0821 0.0821 0.0820 0.0820
c = 2 0.1923 0.1924 0.1925 0.1924
c = 3 0.3433 0.3436 0.3441 0.3439

Table 3. Option Values in terms of the elasticity parameter
θ and the option’s power c.
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Figure 2. Value of P̃ against the underlying asset price for
the given c ∈ {1, 2, 3, 4}.
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5. Concluding remarks

In this study, we research the fair price of the vulnerable power option under
a local volatility model (a CEV diffusion). Especially, assuming the elasticity
parameter θ is less than 2 (i.e., θ := 2 − ε), we derive the analytic solution for
the option price, and then analyze the price accuracy and the price change with
regards to the model parameters.

Our main results consist of three folds. Firstly, we obtain the approximated
price of the vulnerable power option considering a CEV diffusion. Secondly,
using the Monte–Carlo methods, we verify the solution we studied is accurately
derived. Finally, we conduct numerical experiments to investigate how elasticity
θ affects the price of options. As a result, we can notice that the impact on option
price is more sensitive to power index c than the elasticity θ.

Future works include applying the stochastic volatility model (e.g. the Ornstein-
Uhlenbeck process or a hybrid stochastic and local volatility) to option’s pricing
model. From this advanced model, we can present the pricing formula reflecting
the market’s movement or the traders’ behavior.
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