DOI QR코드

DOI QR Code

How effective are artificial nests in attracting bees? A review

  • Rahimi, Ehsan (Environmental Sciences Research Institute, Shahid Beheshti University) ;
  • Barghjelveh, Shahindokht (Environmental Sciences Research Institute, Shahid Beheshti University) ;
  • Dong, Pinliang (Department of Geography and the Environment, University of North Texas)
  • Received : 2021.07.05
  • Accepted : 2021.08.28
  • Published : 2021.09.30

Abstract

Background: Recent declines in bee populations, along with increasing demand for pollination services in urban, agricultural, and natural environments, have led to strategies to attract wild bees to these areas. One of these strategies is installing artificial nests adjacent to urban gardens and agricultural farms. Bee hotels and nest boxes are among the artificial nests used by gardeners and farmers to attract pollinators. In this paper, we reviewed 50 studies that reported the efficiency of nest boxes and bee hotels in attracting bees. We considered the maximum occupation rate (percentage) as the main index to evaluate the efficiency of artificial nests. Results: The maximum occupation rate of bee hotels was higher in farms (averaged 44.1%) than in forests (averaged 30.3%) and urban (averaged 38.3%) environments. In the case of nest boxes, most studies reported efficiencies of less than 20%, with an occupation rate of 16% and 5.5% on average in forest and urban environments respectively. However, our meta-analysis results showed that there was no significant relationship between the occupation rate of the nests and their installation place. Regression analysis also showed that the structural features of bee hotels (length and diameter) and nest boxes (volume and entrance size) did not affect their efficiency in attracting bees. Conclusion: Our data showed that the strategy of installing artificial nests to attract pollinators is successful only concerning bee hotels, and the use of nest boxes has not been very successful.

Keywords

References

  1. Alvarez LJ, Lucia M, Durante S, Pisonero J, Abrahamovich AH. Occurrence of the exotic leafcutter bee Megachile (Eutricharaea) concinna (Hymenoptera: Megachilidae) in southern South America. An accidental introduction? Journal of Apicultural Research. 2012;51(3):221-6. https://doi.org/10.3896/IBRA.1.51.3.01.
  2. Araujo GJ, Stork-Tonon D, Izzo TJ. Temporal stability of cavity-nesting bee and wasp communities in different types of reforestation in southeastern Amazonia. Restoration Ecology. 2020;28(6):1528-40. https://doi.org/10.1111/rec.13250.
  3. Arena MV, Martines MR, da Silva TN, Destefani FC, Mascotti JC, Silva-Zacarin EC, et al. Multiple-scale approach for evaluating the occupation of stingless bees in Atlantic forest patches. For. Ecol. Manage. 2018a;430:509-16. https://doi.org/10.1016/j.foreco.2018.08.038.
  4. Arena MVN, Destefani FC, da Silva TN, da Silva Mascotti JC, da Silva-Zacarin ECM, Toppa RH. Challenges to the conservation of stingless bees in Atlantic Forest patches: old approaches, new applications. Journal of Insect Conservation. 2018b;22(3):627-33. https://doi.org/10.1007/s10841-018-0090-8.
  5. Armbrust EA. Resource use and nesting behavior of Megachile prosopidis and M. chilopsidis with notes on M. discorhina (Hymenoptera: Megachilidae). Journal of the Kansas Entomological Society. 2004;77(2):89-98. https://doi.org/10.2317/0302.24.1.
  6. Artz DR, Allan MJ, Wardell GI, Pitts-Singer TL. Influence of nest box color and release sites on Osmia lignaria (Hymenoptera: Megachilidae) reproductive success in a commercial almond orchard. J. Econ. Entomol. 2014;107(6):2045-54. https://doi.org/10.1603/EC14237.
  7. Baldock KC, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Morse H, et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nature ecology & evolution. 2019;3(3):363-73. https://doi.org/10.1038/s41559-018-0769-y.
  8. Barron M, Wratten S, Donovan B. A four-year investigation into the efficacy of domiciles for enhancement of bumble bee populations. Agricultural and Forest Entomology. 2000;2(2):141-6. https://doi.org/10.1046/j.1461-9563.2000.00059.x.
  9. Barthell JF, Frankie GW, Thorp RW. Invader effects in a community of cavity nesting megachilid bees (Hymenoptera: Megachilidae). Environ. Entomol. 1998;27(2):240-7. https://doi.org/10.1093/ee/27.2.240.
  10. Bennett AB, Lovell S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One. 2019;14(2):e0212034. https://doi.org/10.1371/journal.pone.0212034.
  11. Berris KK, Barth M. PVC nest boxes are less at risk of occupancy by feral honey bees than timber nest boxes and natural hollows. Ecol. Manage. Restor. 2020;21(2):155-7. https://doi.org/10.1111/emr.12414.
  12. Boff S, Friedel A. Dynamics of nest occupation and homing of solitary bees in painted trap nests. Ecological Entomology. 2020;46(2):496-9. https://doi.org/10.1111/een.12965.
  13. Bosch J. Osmia cornuta Latr.(Hym., Megachilidae) as a potential pollinator in almond orchards: Releasing methods and nest-hole length. Journal of Applied Entomology. 1994;117(1-5):151-7. https://doi.org/10.1111/j.1439-0418.1994.tb00720.x.
  14. Buschini MLT. Species diversity and community structure in trap-nesting bees in Southern Brazil. Apidologie. 2006;37(1):58-66. https://doi.org/10.1051/apido:2005059.
  15. Coelho JR, Sullivan JB. Colonization of wildlife nest boxes by honey bee swarms. Am. Bee J. 1994;134(10):697-9.
  16. Davis AY, Lonsdorf EV, Shierk CR, Matteson KC, Taylor JR, Lovell ST, et al. Enhancing pollination supply in an urban ecosystem through landscape modifications. Landscape and Urban Planning. 2017;162:157-66. https://doi.org/10.1016/j.landurbplan.2017.02.011.
  17. Dorado J, Vazquez DP, Stevani EL, Chacoff NP. Rareness and specialization in plant-pollinator networks. Ecology. 2011;92(1):19-25. https://doi.org/10.1890/10-0794.1.
  18. dos Santos AA, Parizotto D, Schlindwein C, Martins CF. Nesting biology and flower preferences of Megachile (Sayapis) zaptlana. Journal of Apicultural Research. 2020;59(4):609-25. https://doi.org/10.1080/00218839.2019.1703084.
  19. Eeraerts M. Cardboard nesting cavities may promote the development of Osmia cornuta and reduce infestation of kleptoparasitic mites. Journal of Applied Entomology. 2020;144(8):751-4. https://doi.org/10.1111/jen.12793.
  20. Efstathion CA, Bardunias PM, Boyd JD, Kern WH Jr. A push-pull integrated pest management scheme for preventing use of parrot nest boxes by invasive Africanized honey bees. J. Field Ornithol. 2015;86(1):65-72. https://doi.org/10.1111/jofo.12089.
  21. Fabian Y, Sandau N, Bruggisser OT, Aebi A, Kehrli P, Rohr RP, et al. Plant diversity in a nutshell: testing for small-scale effects on trap nesting wild bees and wasps. Ecosphere. 2014;5(2):1-18. https://doi.org/10.1890/ES13-00375.1.
  22. Fernandes J, Antunes P, Santos R, Zulian G, Clemente P, Ferraz D. Coupling spatial pollination supply models with local demand mapping to support collaborative management of ecosystem services. Ecosystems and People. 2020;16(1):212-29. https://doi.org/10.1080/26395916.2020.1800821.
  23. Fetridge ED, Ascher JS, Langellotto GA. The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea). Ann. Entomol. Soc. Am. 2008;101(6):1067-77. https://doi.org/10.1603/0013-8746-101.6.1067.
  24. Frankie G, Thorp R, Hernandez J, Rizzardi M, Ertter B, Pawelek J, et al. Native bees are a rich natural resource in urban California gardens. California Agriculture. 2009;63(3):113-20. https://doi.org/10.3733/ca.v063n03p113.
  25. Garbuzov M, Alton K, Ratnieks FL. Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects. PeerJ. 2017;5:e3066. https://doi.org/10.7717/peerj.3066.
  26. Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., 2013, Wild pollinators enhance fruit set of crops regardless of honey bee abundance, science 339(6127):1608-1611.. https://doi.org/10.1126/science.1230200
  27. Gaston KJ, Smith RM, Thompson K, Warren PH. Urban domestic gardens (II): experimental tests of methods for increasing biodiversity. Biodivers. Conserv. 2005;14(2):395-413. https://doi.org/10.1007/s10531-004-6066-x.
  28. Geslin B, Gachet S, Deschamps-Cottin M, Flacher F, Ignace B, Knoploch C, et al. Bee hotels host a high abundance of exotic bees in an urban context. Acta Oecologica. 2020;105:103556. https://doi.org/10.1016/j.actao.2020.103556.
  29. Giovanetti M, Giuliani C, Boff S, Fico G, Lupi D. A botanic garden as a tool to combine public perception of nature and life-science investigations on native/exotic plants interactions with local pollinators. PLoS One. 2020;15(2):e0228965. https://doi.org/10.1371/journal.pone.0228965.
  30. Graham KK, Perkins JA, Peake A, Killewald M, Zavalnitskaya J, Wilson JK, et al. Wildflower plantings on fruit farms provide pollen resources and increase nesting by stem nesting bees. Agricultural and Forest Entomology. 2020;432(2):222-31. https://doi.org/10.1111/afe.12424.
  31. Guimaraes-Brasil MO, Brasil DF, Pacheco-Filho AJ, Silva CI, Freitas BM. Trap nest preference of solitary bees in fragments of the Baturite massif, Atlantic Forest, Brazil. An. Acad. Bras. Cienc. 2020;92(suppl 1). https://doi.org/10.1590/0001-3765202020180558.
  32. Guisse JK, Miller DG. Distribution and habitat preferences of Osmia lignaria (Hymenoptera: Megachilidae) and associated cavity-nesting insects in California's Sierra Nevada foothills adjacent to the Sacramento Valley. The Pan-Pacific Entomologist. 2011;87(3):188-95. https://doi.org/10.3956/2007-45.1.
  33. Holzschuh A, Dudenhoffer J-H, Tscharntke T. Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol. Conserv. 2012;153:101-7. https://doi.org/10.1016/j.biocon.2012.04.032.
  34. Iantas J, Gruchowski Woitowicz FC, Tunes Buschini ML. Habitat modification and alpha-beta diversity in trap nesting bees and wasps (Hymenoptera: Aculeata) in southern Brazil. Tropical Zoology. 2017;30(2):83-96. https://doi.org/10.1080/03946975.2017.1301628.
  35. Inoue T, Nakamura K, Salmah S, Abbas I. Population dynamics of animals in unpredictably-changing tropical environments. J. Biosci. 1993;18(4):425-55. https://doi.org/10.1007/BF02703078.
  36. Jenkins DA, Matthews RW. Cavity-nesting Hymenoptera in disturbed habitats of Georgia and South Carolina: nest architecture and seasonal occurrence. Journal of the Kansas Entomological Society. 2004;77(3):203-14. https://doi.org/10.2317/0212.18a.1.
  37. Johnson SA, Tompkins MM, Tompkins H, Colla SR. Artificial domicile use by bumble bees (Bombus; Hymenoptera: Apidae) in Ontario, Canada. J. Insect Sci. 2019;19(1):7. https://doi.org/10.1093/jisesa/iey139
  38. Junqueira C, Hogendoorn K, Augusto S. The use of trap-nests to manage carpenter bees (Hymenoptera: Apidae: Xylocopini), pollinators of passion fruit (Passifloraceae: Passiflora edulis f. flavicarpa). Ann. Entomol. Soc. Am. 2012;105(6):884-9. https://doi.org/10.1603/AN12061.
  39. Kamke R, Zillikens A, Heinle S, Steiner J. Natural enemies and life cycle of the orchid bee Eufriesea smaragdina (Hymenoptera: Apidae) reared from trap nests. Journal of the Kansas Entomological Society. 2008;81(2):101-9. https://doi.org/10.2317/JKES-703.26.1.
  40. Kevan PG, Clark EA, Thomas VG. Insect pollinators and sustainable agriculture. Am. J. Altern. Agric. 1990;13-22(1):13-22. https://doi.org/10.1017/S0889189300003179.
  41. Klein, A.-M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Tscharntke, T., 2007, Importance of pollinators in changing landscapes for world crops, Proceedings of the royal society B: biological sciences 274(1608):303-313, 1608, DOI: https://doi.org/10.1098/rspb.2006.3721.
  42. Kulhanek K, Steinhauer N, Rennich K, Caron DM, Sagili RR, Pettis JS, et al. A national survey of managed honey bee 2015-2016 annual colony losses in the USA. Journal of Apicultural Research. 2017;56(4):328-40. https://doi.org/10.1080/00218839.2017.1344496.
  43. Le Roux DS, Ikin K, Lindenmayer DB, Bistricer G, Manning AD, Gibbons P. Effects of entrance size, tree size and landscape context on nest box occupancy: Considerations for management and biodiversity offsets. For. Ecol. Manage. 2016;366:135-42. https://doi.org/10.1016/j.foreco.2016.02.017.
  44. Leonard RJ, Harmon-Threatt AN. Methods for rearing ground-nesting bees under laboratory conditions. Apidologie. 2019;50(5):689-703. https://doi.org/10.1007/s13592-019-00679-8.
  45. Lerman SB, Milam J. Bee fauna and floral abundance within lawn-dominated suburban yards in Springfield, MA. Ann. Entomol. Soc. Am. 2016;109(5):713-23. https://doi.org/10.1093/aesa/saw043.
  46. Loyola RD, Martins RP. Small-scale area effect on species richness and nesting occupancy of cavity-nesting bees and wasps. Revista Brasileira de Entomologia. 2011;55(1):69-74. https://doi.org/10.1590/S0085-56262011000100011.
  47. Lye GC, Park KJ, Holland JM, Goulson D. Assessing the efficacy of artificial domiciles for bumblebees. Journal for Nature Conservation. 2011;19(3):154-60. https://doi.org/10.1016/j.jnc.2010.11.001.
  48. MacIvor JS. Cavity-nest boxes for solitary bees: a century of design and research. Apidologie. 2017;48(3):311-27. https://doi.org/10.1007/s13592-016-0477-z.
  49. MacIvor JS, Packer L. 'Bee hotels' as tools for native pollinator conservation: a premature verdict? PLoS One. 2015;10(3):e0122126. https://doi.org/10.1371/journal.pone.0122126.
  50. MacIvor JS, Ruttan A, Salehi B. Exotics on exotics: Pollen analysis of urban bees visiting Sedum on a green roof. Urban Ecosyst. 2015;18(2):419-30. https://doi.org/10.1007/s11252-014-0408-6.
  51. Maclvor JS. Building height matters: nesting activity of bees and wasps on vegetated roofs. Israel Journal of Ecology and Evolution. 2016;62(1-2):88-96. https://doi.org/10.1080/15659801.2015.1052635.
  52. Martinez-Nunez C, Manzaneda AJ, Isla J, Tarifa R, Calvo G, Molina JL, et al. Low-intensity management benefits solitary bees in olive groves. J. Appl. Ecol. 2020;57(1):111-20. https://doi.org/10.1111/1365-2664.13511.
  53. Matteson KC, Langellotto GA. Bumble bee abundance in New York City community gardens: implications for urban agriculture. Cities and the Environment (CATE). 2009;2(1):5-12. https://doi.org/10.15365/cate.2152009.
  54. Mazzeo NM, Torretta JP. Wild bees (Hymenoptera: Apoidea) in an urban botanical garden in Buenos Aires, Argentina. Studies on Neotropical Fauna and Environment. 2015;50(3):182-93. https://doi.org/10.1080/01650521.2015.1093764.
  55. McCallum RS, McLean NL, Cutler GC. An assessment of artificial nests for cavitynesting bees (Hymenoptera: Megachilidae) in lowbush blueberry (Ericaceae). Canadian Entomologist. 2018;150(6):802-12. https://doi.org/10.4039/tce.2018.45.
  56. Michener CD. The bees of the world: JHU press; 2000.
  57. Oliveira R, Schlindwein C. Searching for a manageable pollinator for acerola orchards: the solitary oil-collecting bee Centris analis (Hymenoptera: Apidae: Centridini). J. Econ. Entomol. 2009;102(1):265-73. https://doi.org/10.1603/029.102.0136.
  58. Oliveira RC, Menezes C, Soares AEE, Fonseca VLI. Trap-nests for stingless bees (Hymenoptera, Meliponini). Apidologie. 2013;44(1):29-37. https://doi.org/10.1007/s13592-012-0152-y.
  59. Olsson O, Bolin A, Smith HG, Lonsdorf EV. Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory. Ecol. Model. 2015;316:133-43. https://doi.org/10.1016/j.ecolmodel.2015.08.009.
  60. Ontiri EM, Odino M, Kasanga A, Kahumbu P, Robinson LW, Currie T, et al. Maasai pastoralists kill lions in retaliation for depredation of livestock by lions. People and Nature. 2019;1(1):59-69. https://doi.org/10.1002/pan3.10.
  61. Peralta G, Stevani EL, Chacoff NP, Dorado J, Vazquez DP. Fire influences the structure of plant-bee networks. J. Anim. Ecol. 2017;86(6):1372-9. https://doi.org/10.1111/1365-2656.12731.
  62. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 2010;25(6):345-53. https://doi.org/10.1016/j.tree.2010.01.007.
  63. Prange, S., Nelson, D. H., 2007, Use of small-volume nest boxes by Apis mellifera L.(European honey bees) in Alabama, Southeastern Naturalist 6(2):370-375, DOI: https://doi.org/10.1656/1528-7092(2007)6[370:UOSNBB]2.0.CO;2.
  64. Reboucas PO, Aguiar C, Ferreira V, Sodre G, Carvalho C, Gimenes M. The cavity-nesting bee guild (Apoidea) in a Neotropical sandy coastal plain. Sociobiology. 2018;65(4):706-13. https://doi.org/10.13102/sociobiology.v65i4.3339.
  65. Silva M, Ramalho M, Monteiro D. Communities of social bees (Apidae: Meliponini) in trap-nests: the spatial dynamics of reproduction in an area of Atlantic Forest. Neotrop. Entomol. 2014;43(4):307-13. https://doi.org/10.1007/s13744-014-0219-8.
  66. Staab M, Pufal G, Tscharntke T, Klein AM. Trap nests for bees and wasps to analyse trophic interactions in changing environments-A systematic overview and user guide. Methods in Ecology and Evolution. 2018;9(11):2226-39. https://doi.org/10.1111/2041-210X.13070.
  67. Stubbs CS, Drummond FA, Allard SL. Bee conservation and increasing Osmia spp. in Maine lowbush blueberry fields. Northeastern Naturalist. 1997;133-144(3):133. https://doi.org/10.2307/3858708.
  68. Taki H, Kevan PG, Viana BF, Silva FO, Buck M. Artificial covering on trap nests improves the colonization of trap-nesting wasps. Journal of Applied Entomology. 2008;132(3):225-9. https://doi.org/10.1111/j.1439-0418.2007.01237.x.
  69. Theodorou, P., Radzeviciute, R., Lentendu, G., Kahnt, B., Husemann, M., Bleidorn, C., Settele, J., Schweiger, O., Grosse, I., Wubet, T., 2020, Urban areas as hotspots for bees and pollination but not a panacea for all insects, Nat. Commun. 11(1):1-13, 576, DOI: https://doi.org/10.1038/s41467-020-14496-6.
  70. Torretta JP, Durante SP, Basilio AM. Nesting ecology of Megachile (Chrysosarus) catamarcensis Schrottky (Hymenoptera: Megachilidae), a Prosopis-specialist bee. Journal of Apicultural Research. 2014;53(5):590-8. https://doi.org/10.3896/IBRA.1.53.5.06.
  71. Veiga JP, Wamiti W, Polo V, Muchai M. Interaction between distant taxa in the use of tree cavities in African ecosystems: a study using nest-boxes. J. Trop. Ecol. 2013;187-197(3):187-97. https://doi.org/10.1017/S026646741300014X.
  72. Viana BF, Boscolo D, Mariano Neto E, Lopes LE, Lopes AV, Ferreira PA, et al. How well do we understand landscape effects on pollinators and pollination services? Journal of Pollination Ecology. 2012;7. https://doi.org/10.26786/1920-7603(2012)2.
  73. von Konigslow V, Klein A-M, Staab M, Pufal G. Benchmarking nesting aids for cavity-nesting bees and wasps. Biodivers. Conserv. 2019;28(14):3831-49. https://doi.org/10.1007/s10531-019-01853-1.
  74. Westerfelt P, Widenfalk O, Lindelow A, Gustafsson L, Weslien J. Nesting of solitary wasps and bees in natural and artificial holes in dead wood in young boreal forest stands. Insect Conservation and Diversity. 2015;8(6):493-504. https://doi.org/10.1111/icad.12128.
  75. Wilkaniec Z, Giejdasz K. Suitability of nesting substrates for the cavity-nesting bee Osmia rufa. Journal of apicultural research. 2003;42(3):29-31. https://doi.org/10.1080/00218839.2003.11101084.
  76. Wilson ES, Murphy CE, Rinehart JP, Yocum G, Bowsher JH. Microclimate temperatures impact nesting preference in Megachile rotundata (Hymenoptera: Megachilidae). Environ. Entomol. 2020a;49(2):296-303. https://doi.org/10.1093/ee/nvaa012.
  77. Wilson RS, Leonhardt SD, Burwell CJ, Fuller C, Smith TJ, Kaluza BF, et al. Landscape Simplification Modifies Trap-Nesting Bee and Wasp Communities in the Subtropics. Insects. 2020b;11(12):853. https://doi.org/10.3390/insects11120853.
  78. Winfree R, Aguilar R, Vazquez DP, LeBuhn G, Aizen MA. A meta-analysis of bees' responses to anthropogenic disturbance. Ecology. 2009;90(8):2068-76. https://doi.org/10.1890/08-1245.1.

Cited by

  1. PollMap: a software for crop pollination mapping in agricultural landscapes vol.45, pp.1, 2021, https://doi.org/10.1186/s41610-021-00210-0