DOI QR코드

DOI QR Code

Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance

시설물의 유지관리를 위한 기계학습 기반 콘크리트 균열 감지 프레임워크

  • Ji, Bongjun (Industrial and Management Engineering, Pohang University of Science and Technology)
  • Received : 2021.08.06
  • Accepted : 2021.09.25
  • Published : 2021.10.01

Abstract

The deterioration of facilities is an unavoidable phenomenon. For the management of aging facilities, cracks can be detected and tracked, and the condition of the facilities can be indirectly inferred. Therefore, crack detection plays a crucial role in the management of aged facilities. Conventional maintenances are conducted using the crack detection results. For example, maintenance activities to prevent further deterioration can be performed. However, currently, most crack detection relies only on human judgment, so if the area of the facility is large, cost and time are excessively used, and different judgment results may occur depending on the expert's competence, it causes reliability problems. This paper proposes a concrete crack detection framework based on machine learning to overcome these limitations. Fully automated concrete crack detection was possible through the proposed framework, which showed a high accuracy of 96%. It is expected that effective and efficient management will be possible through the proposed framework in this paper.

시설물의 노후화는 피할 수 없는 현상이다. 노후화된 시설물의 관리를 위해 균열을 감지하고 이를 추적하면서 시설물의 상태를 간접적으로 추론할 수 있다. 따라서 균열 감지는 노후화된 시설물의 관리를 위해 필수적 역할을 하며 감지 결과를 바탕으로 더 이상의 노후화를 막기 위한 활동을 할 수 있다. 하지만, 현재 대부분의 균열 감지는 전문가의 판단에만 의존하기에 시설물의 면적이 큰 경우 비용과 시간이 과도하게 사용되고, 전문가의 역량에 따라 다른 판단 결과가 발생할 수 있어 신뢰성에 문제가 있었다. 본 논문에서는 이러한 한계를 극복하기 위해 기계학습 기반의 콘크리트 균열 감지 프레임워크를 제안한다. 제안된 프레임워크는 데이터 분류, 기계학습 모델 학습, 학습된 모델의 검증과 테스트를 포함하는 프레임워크로 완전 자동화된 콘크리트 균열 감지가 가능하다. 제안된 프레임워크를 통해 학습된 기계학습 모델은 콘크리트 균열 이미지와 정상 이미지를 96%의 높은 정확도로 분류할 수 있었다. 본 논문에서 제안된 프레임워크를 적용하여 기존의 전문가 중심의 시설물 유지관리보다 더욱 효과적이고 효율적인 시설물의 유지관리가 가능할 것으로 기대된다.

Keywords

References

  1. Abdel-Qader, I., Abudayyeh, O. and Kelly, M. (2003), Analysis of edge-detection techniques for crack identification in bridges. Journal of Computing in Civil Engineering, Vol. 17, No. 4, pp. 255~263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
  2. Chen, X., Chen, J., Han, X., Zhao, C., Zhang, D., Zhu, K. and Su, Y. (2020), A light-weighted cnn model for wafer structural defect detection, IEEE Access, No. 8, pp. 24006~24018. https://doi.org/10.1109/ACCESS.2020.2970461
  3. Cheong, L. K., Suandi, S. A. and Rahman, S. (2019), Defects and components recognition in printed circuit boards using convolutional neural network, In 10th International Conference on Robotics, Vision, Signal Processing and Power Applications, pp. 75~81.
  4. Choudhary, G. K. and Dey, S. (2012), Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks, In 2012 IEEE fifth international conference on advanced computational intelligence (ICACI), pp. 404~411.
  5. Chun, P. J., Izumi, S. and Yamane, T. (2021), Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine, Computer-Aided Civil and Infrastructure Engineering, Vol. 36, No. 1, pp. 61~72. https://doi.org/10.1111/mice.12564
  6. Caglar Firat, O. (2019), Concrete Crack Images for Classification, Mendeley Data.
  7. Hutchinson, T. C. and Chen, Z. (2006), Improved image analysis for evaluating concrete damage, Journal of Computing in Civil Engineering, Vol. 20, No. 3, pp. 210~216. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210)
  8. Ji, B., Lee, S. J., Mazumder, M., Lee, M. S. and Kim, H. H. (2020), Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders, Materials, Vol. 13, No. 24, pp. 5738. https://doi.org/10.3390/ma13245738
  9. Kawamura, K. and Miyamoto, A. (2003), Condition state evaluation of existing reinforced concrete bridges using neuro-fuzzy hybrid system, Computers & structures, Vol. 81, No. 18~19, pp. 1931~1940. https://doi.org/10.1016/S0045-7949(03)00213-X
  10. Kim, A. R., Kim, D. H., Byun, Y. S. and Lee, S. W. (2018), Crack detection of concrete structure using deep learning and image processing method in geotechnical engineering, Journal of the Korean Geotechnical Society, Vol. 34, No. 12, pp. 145~154 (In Korean). https://doi.org/10.7843/KGS.2018.34.12.145
  11. Kim, Y. S. (2020), Current status of old buildings and future tasks, National Assmebly Research Service, pp. 01~13 (In Korean).
  12. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. and Jackel, L. D. (1989), Backpropagation applied to handwritten zip code recognition, Neural Computation, Vol. 1, No. 4, pp. 541~551. https://doi.org/10.1162/neco.1989.1.4.541
  13. Liu, Y., Yao, J., Lu, X., Xie, R. and Li, L. (2019), Deepcrack: A deep hierarchical feature learning architecture for crack segmentation, Neurocomputing, Vol. 338, pp. 139~153. https://doi.org/10.1016/j.neucom.2019.01.036
  14. Luxmoore, A. (1973), Holographic detection of cracks in concrete, Non-Destructive Testing, Vol. 6, No. 5, pp. 258~263. https://doi.org/10.1016/0029-1021(73)90073-X
  15. Prasanna, P., Dana, K. J., Gucunski, N., Basily, B. B., La, H. M., Lim, R. S. and Parvardeh, H. (2014), Automated crack detection on concrete bridges, IEEE Transactions on automation science and engineering, Vol. 13, No. 2, pp. 591~599. https://doi.org/10.1109/TASE.2014.2354314
  16. Ministry of Land, Infrastructure, Transport and Tourism. (2019), Tunnel periodic inspection guideline.
  17. Shi, Y., Cui, L., Qi, Z., Meng, F. and Chen, Z. (2016), Automatic road crack detection using random structured forests, IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 12, pp. 3434~3445. https://doi.org/10.1109/TITS.2016.2552248
  18. Simonyan, K. and Zisserman, A. (2014), Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556.
  19. Xie, W., Wei, S., Zheng, Z., Jiang, Y. and Yang, D. (2021), Recognition of defective carrots based on deep learning and transfer learning, Food and Bioprocess Technology, Vol. 14, No. 7, pp. 1~14. https://doi.org/10.1007/s11947-020-02505-x
  20. Zhang, W., Zhang, Z., Qi, D. and Liu, Y. (2014), Automatic crack detection and classification method for subway tunnel safety monitoring, Sensors, Vol. 14, No. 10, pp. 19307~19328. https://doi.org/10.3390/s141019307
  21. Zhao, Z. and Chen, C. (2002), A fuzzy system for concrete bridge damage diagnosis, Computers & structures, Vol. 80, No.7~8, pp. 629~641. https://doi.org/10.1016/S0045-7949(02)00031-7