DOI QR코드

DOI QR Code

Synaptotagmin 5 Controls SYP132-VAMP721/722 Interaction for Arabidopsis Immunity to Pseudomonas syringae pv tomato DC3000

  • Kim, Soohong (Department of Molecular Biology, Dankook University) ;
  • Kim, Hyeran (Department of Biological Sciences, Kangwon National University) ;
  • Park, Keunchun (Department of Molecular Biology, Dankook University) ;
  • Cho, Da Jeong (Department of Molecular Biology, Dankook University) ;
  • Kim, Mi Kyung (Department of Molecular Biology, Dankook University) ;
  • Kwon, Chian (Department of Molecular Biology, Dankook University) ;
  • Yun, Hye Sup (Department of Biological Sciences, Konkuk University)
  • 투고 : 2021.04.16
  • 심사 : 2021.08.08
  • 발행 : 2021.09.30

초록

Vesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against Pseudomonas syringae pv tomato (Pst) DC3000 by regulating SYP132-VAMP721/722 interactions. Calcium-dependent stimulation of in vitro SYP132-VAMP722 interaction by SYT5 and reduced in vivo SYP132-VAMP721/722 interaction in syt5 plants suggest that SYT5 regulates the interaction between SYP132 and VAMP721/722. We interestingly found that disease resistance to Pst DC3000 bacterium but not to Erysiphe pisi fungus is compromised in syt5 plants. Since SYP132 plays an immune function to bacteria, elevated growth of surface-inoculated Pst DC3000 in VAMP721/722-deficient plants suggests that SYT5 contributes to plant immunity to Pst DC3000 by promoting the SYP132-VAMP721/722 immune secretory pathway.

키워드

과제정보

This work was supported by a 2019 Research Grant (520190026 to H.K.) from Kangwon National University, Korea, a grant (PJ01477001 to C.K.) from Rural Development Administration, Korea, a grant (P0016045 to C.K.) from Korea Institute for Advancement of Technology, Korea, and grants (2016R1D1A1B02007322 to C.K.; 2021R1F1A1063111 to H.S.Y.) from National Research Foundation, Korea. We thank Hae Ri Kwon and Yunjin Choi for technical assistance.

참고문헌

  1. Bestwick, C.S., Brown, I.R., Bennett, M.H., and Mansfield, J.W. (1997). Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9, 209-221. https://doi.org/10.1105/tpc.9.2.209
  2. Bohlenius, H., Morch, S.M., Godfrey, D., Nielsen, M.E., and Thordal-Christensen, H. (2010). The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxindependent preinvasive basal defense in barley. Plant Cell 22, 3831-3844. https://doi.org/10.1105/tpc.110.078063
  3. Chezem, W.R., Memon, A., Li, F.S., Weng, J.K., and Clay, N.K. (2017). SG2-Type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis. Plant Cell 29, 1907-1926. https://doi.org/10.1105/tpc.16.00954
  4. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973-977. https://doi.org/10.1038/nature02076
  5. Ebine, K., Fujimoto, M., Okatani, Y., Nishiyama, T., Goh, T., Ito, E., Dainobu, T., Nishitani, A., Uemura, T., Sato, M.H., et al. (2011). A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 13, 853-859. https://doi.org/10.1038/ncb2270
  6. El Kasmi, F., Krause, C., Hiller, U., Stierhof, Y.D., Mayer, U., Conner, L., Kong, L., Reichardt, I., Sanderfoot, A.A., and Jurgens, G. (2013). SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol. Biol. Cell 24, 1593-1601. https://doi.org/10.1091/mbc.e13-02-0074
  7. El Kasmi, I., Khadivjam, B., Lackman, M., Duron, J., Bonneil, E., Thibault, P., and Lippe, R. (2018). Extended synaptotagmin 1 interacts with herpes simplex virus 1 glycoprotein M and negatively modulates virus-induced membrane fusion. J. Virol. 92, e01281-17.
  8. Ichikawa, M., Hirano, T., Enami, K., Fuselier, T., Kato, N., Kwon, C., Voigt, B., Schulze-Lefert, P., Baluska, F., and Sato, M.H. (2014). Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. Plant Cell Physiol. 55, 790-800. https://doi.org/10.1093/pcp/pcu048
  9. Ishikawa, K., Tamura, K., Fukao, Y., and Shimada, T. (2020). Structural and functional relationships between plasmodesmata and plant endoplasmic reticulum-plasma membrane contact sites consisting of three synaptotagmins. New Phytol. 226, 798-808. https://doi.org/10.1111/nph.16391
  10. Ivanov, S., Fedorova, E.E., Limpens, E., De Mita, S., Genre, A., Bonfante, P., and Bisseling, T. (2012). Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl. Acad. Sci. U. S. A. 109, 8316-8321. https://doi.org/10.1073/pnas.1200407109
  11. Jahn, R. and Scheller, R.H. (2006). SNAREs--engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631-643. https://doi.org/10.1038/nrm2002
  12. Johansson, O.N., Fahlberg, P., Karimi, E., Nilsson, A.K., Ellerstrom, M., and Andersson, M.X. (2014). Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana. Front. Plant Sci. 5, 639.
  13. Kalde, M., Nuhse, T.S., Findlay, K., and Peck, S.C. (2007). The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. U. S. A. 104, 11850-11855. https://doi.org/10.1073/pnas.0701083104
  14. Karnahl, M., Park, M., Krause, C., Hiller, U., Mayer, U., Stierhof, Y.D., and Jurgens, G. (2018). Functional diversification of Arabidopsis SEC1-related SM proteins in cytokinetic and secretory membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 115, 6309-6314. https://doi.org/10.1073/pnas.1722611115
  15. Karnik, R., Grefen, C., Bayne, R., Honsbein, A., Kohler, T., Kioumourtzoglou, D., Williams, M., Bryant, N.J., and Blatt, M.R. (2013). Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic. Plant Cell 25, 1368-1382. https://doi.org/10.1105/tpc.112.108506
  16. Karnik, R., Zhang, B., Waghmare, S., Aderhold, C., Grefen, C., and Blatt, M.R. (2015). Binding of SEC11 indicates its role in SNARE recycling after vesicle fusion and identifies two pathways for vesicular traffic to the plasma membrane. Plant Cell 27, 675-694. https://doi.org/10.1105/tpc.114.134429
  17. Khare, S., Singh, N.B., Singh, A., Hussain, I., Niharika, K., Yadav, V., Bano, C., Yadav, R.K., and Amist, N. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 63, 203-216. https://doi.org/10.1007/s12374-020-09245-7
  18. Kikuma, K., Li, X., Kim, D., Sutter, D., and Dickman, D.K. (2017). Extended synaptotagmin localizes to presynaptic ER and promotes neurotransmission and synaptic growth in Drosophila. Genetics 207, 993-1006. https://doi.org/10.1534/genetics.117.300261
  19. Kim, H., Kwon, H., Kim, S., Kim, M.K., Botella, M.A., Yun, H.S., and Kwon, C. (2016). Synaptotagmin 1 negatively controls the two distinct immune secretory pathways to powdery mildew fungi in Arabidopsis. Plant Cell Physiol. 57, 1133-1141. https://doi.org/10.1093/pcp/pcw061
  20. Kim, H., O'Connell, R., Maekawa-Yoshikawa, M., Uemura, T., Neumann, U., and Schulze-Lefert, P. (2014). The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J. 79, 835-847. https://doi.org/10.1111/tpj.12591
  21. Kim, S., Choi, Y., Kwon, C., and Yun, H.S. (2019). Endoplasmic reticulum stress-induced accumulation of VAMP721/722 requires CALRETICULIN 1 and CALRETICULIN 2 in Arabidopsis. J. Integr. Plant Biol. 61, 974-980. https://doi.org/10.1111/jipb.12728
  22. Koh, S., Andre, A., Edwards, H., Ehrhardt, D., and Somerville, S. (2005). Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J. 44, 516-529. https://doi.org/10.1111/j.1365-313X.2005.02545.x
  23. Kwon, C., Lee, J.H., and Yun, H.S. (2020a). SNAREs in plant biotic and abiotic stress responses. Mol. Cells 43, 501-508. https://doi.org/10.14348/molcells.2020.0007
  24. Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., et al. (2008). Co-option of a default secretory pathway for plant immune responses. Nature 451, 835-840. https://doi.org/10.1038/nature06545
  25. Kwon, H., Cho, D.J., Lee, H., Nam, M.H., Kwon, C., and Yun, H.S. (2020b). CCOAOMT1, a candidate cargo secreted via VAMP721/722 secretory vesicles in Arabidopsis. Biochem. Biophys. Res. Commun. 524, 977-982. https://doi.org/10.1016/j.bbrc.2020.02.029
  26. Lee, E., Santana, B.V.N., Samuels, E., Benitez-Fuente, F., Corsi, E., Botella, M.A., Perez-Sancho, J., Vanneste, S., Friml, J., Macho, A., et al. (2020). Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 endoplasmic reticulum-plasma membrane contact site complexes in Arabidopsis. J. Exp. Bot. 71, 3986-3998. https://doi.org/10.1093/jxb/eraa138
  27. Lee, M.H., Jeon, H.S., Kim, S.H., Chung, J.H., Roppolo, D., Lee, H.J., Cho, H.J., Tobimatsu, Y., Ralph, J., and Park, O.K. (2019). Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 38, e101948.
  28. Levy, A., Zheng, J.Y., and Lazarowitz, S.G. (2015). Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 25, 2018-2025. https://doi.org/10.1016/j.cub.2015.06.015
  29. Lewis, J.D. and Lazarowitz, S.G. (2010). Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc. Natl. Acad. Sci. U. S. A. 107, 2491-2496. https://doi.org/10.1073/pnas.0909080107
  30. Li, Y., Zhang, Y., Wang, Q.X., Wang, T.T., Cao, X.L., Zhao, Z.X., Zhao, S.L., Xu, Y.J., Xiao, Z.Y., Li, J.L., et al. (2018). RESISTANCE TO POWDERY MILDEW8.1 boosts pattern-triggered immunity against multiple pathogens in Arabidopsis and rice. Plant Biotechnol. J. 16, 428-441. https://doi.org/10.1111/pbi.12782
  31. Lipka, V., Kwon, C., and Panstruga, R. (2007). SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23, 147-174. https://doi.org/10.1146/annurev.cellbio.23.090506.123529
  32. Nielsen, M.E., Feechan, A., Bohlenius, H., Ueda, T., and Thordal-Christensen, H. (2012). Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc. Natl. Acad. Sci. U. S. A. 109, 11443-11448. https://doi.org/10.1073/pnas.1117596109
  33. Pajonk, S., Kwon, C., Clemens, N., Panstruga, R., and Schulze-Lefert, P. (2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283, 26974-26984. https://doi.org/10.1074/jbc.M805236200
  34. Park, M., Touihri, S., Muller, I., Mayer, U., and Jurgens, G. (2012). Sec1/Munc18 protein stabilizes fusion-competent syntaxin for membrane fusion in Arabidopsis cytokinesis. Dev. Cell 22, 989-1000. https://doi.org/10.1016/j.devcel.2012.03.002
  35. Perez-Sancho, J., Vanneste, S., Lee, E., McFarlane, H.E., Esteban Del Valle, A., Valpuesta, V., Friml, J., Botella, M.A., and Rosado, A. (2015). The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol. 168, 132-143. https://doi.org/10.1104/pp.15.00260
  36. Reichardt, I., Slane, D., El Kasmi, F., Knoll, C., Fuchs, R., Mayer, U., Lipka, V., and Jurgens, G. (2011). Mechanisms of functional specificity among plasma-membrane syntaxins in Arabidopsis. Traffic 12, 1269-1280. https://doi.org/10.1111/j.1600-0854.2011.01222.x
  37. Saheki, Y. and De Camilli, P. (2017). The extended-synaptotagmins. Biochim. Biophys. Acta Mol. Cell Res. 1864, 1490-1493. https://doi.org/10.1016/j.bbamcr.2017.03.013
  38. Sauer, M., Paciorek, T., Benkova, E., and Friml, J. (2006). Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat. Protoc. 1, 98-103. https://doi.org/10.1038/nprot.2006.15
  39. Schapire, A.L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., Salinas, J., Mancuso, S., Valpuesta, V., Baluska, F., et al. (2008). Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20, 3374-3388. https://doi.org/10.1105/tpc.108.063859
  40. Schreiber, K., Ckurshumova, W., Peek, J., and Desveaux, D. (2008). A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis. Plant J. 54, 522-531. https://doi.org/10.1111/j.1365-313X.2008.03425.x
  41. Sogawa, A., Yamazaki, A., Yamasaki, H., Komi, M., Manabe, T., Tajima, S., Hayashi, M., and Nomura, M. (2019). SNARE proteins LjVAMP72a and LjVAMP72b are required for root symbiosis and root hair formation in Lotus japonicus. Front. Plant Sci. 9, 1992. https://doi.org/10.3389/fpls.2018.01992
  42. Takemoto, D., Jones, D.A., and Hardham, A.R. (2003). GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J. 33, 775-792. https://doi.org/10.1046/j.1365-313X.2003.01673.x
  43. Uemura, T., Nakano, R.T., Takagi, J., Wang, Y., Kramer, K., Finkemeier, I., Nakagami, H., Tsuda, K., Ueda, T., Schulze-Lefert, P., et al. (2019). A Golgi-released subpopulation of the trans-Golgi network mediates protein secretion in Arabidopsis. Plant Physiol. 179, 519-532. https://doi.org/10.1104/pp.18.01228
  44. Waghmare, S., Lefoulon, C., Zhang, B., Liliekyte, E., Donald, N., and Blatt, M.R. (2019). K+ Channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol. 181, 1096-1113. https://doi.org/10.1104/pp.19.00919
  45. Wang, H., Han, S., Siao, W., Song, C., Xiang, Y., Wu, X., Cheng, P., Li, H., Jasik, J., Micieta, K., et al. (2015). Arabidopsis synaptotagmin 2 participates in pollen germination and tube growth and is delivered to plasma membrane via conventional secretion. Mol. Plant 8, 1737-1750. https://doi.org/10.1016/j.molp.2015.09.003
  46. Wang, P., Pleskot, R., Zang, J., Winkler, J., Wang, J., Yperman, K., Zhang, T., Wang, K., Gong, J., Guan, Y., et al. (2019). Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun. 10, 5132. https://doi.org/10.1038/s41467-019-12782-6
  47. Xing, J., Li, X., Wang, X., Lv, X., Wang, L., Zhang, L., Zhu, Y., Shen, Q., Baluska, F., Samaj, J., et al. (2019). Secretion of phospholipase D functions as a regulatory mechanism in plant innate immunity. Plant Cell 31, 3015-3032. https://doi.org/10.1105/tpc.19.00534
  48. Yamazaki, T., Kawamura, Y., Minami, A., and Uemura, M. (2008). Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20, 3389-3404. https://doi.org/10.1105/tpc.108.062679
  49. Yamazaki, T., Takata, N., Uemura, M., and Kawamura, Y. (2010). Arabidopsis synaptotagmin SYT1, a type I signal-anchor protein, requires tandem C2 domains for delivery to the plasma membrane. J. Biol. Chem. 285, 23165-23176. https://doi.org/10.1074/jbc.M109.084046
  50. Yi, C., Park, S., Yun, H.S., and Kwon, C. (2013). Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application. J. Plant Physiol. 170, 529-533. https://doi.org/10.1016/j.jplph.2012.11.001
  51. Yu, X., Lund, S.P., Scott, R.A., Greenwald, J.W., Records, A.H., Nettleton, D., Lindow, S.E., Gross, D.C., and Beattie, G.A. (2013). Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc. Natl. Acad. Sci. U. S. A. 110, E425-E434. https://doi.org/10.1073/pnas.1221892110
  52. Yun, H.S., Kwaaitaal, M., Kato, N., Yi, C., Park, S., Sato, M.H., Schulze-Lefert, P., and Kwon, C. (2013). Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis. Mol. Cells 35, 481-488. https://doi.org/10.1007/s10059-013-2130-2
  53. Yun, H.S. and Kwon, C. (2017). Vesicle trafficking in plant immunity. Curr. Opin. Plant Biol. 40, 34-42. https://doi.org/10.1016/j.pbi.2017.07.001
  54. Zhang, B., Karnik, R., Alvim, J., Donald, N., and Blatt, M.R. (2019). Dual sites for SEC11 on the SNARE SYP121 implicate a binding exchange during secretory traffic. Plant Physiol. 180, 228-239. https://doi.org/10.1104/pp.18.01315
  55. Zhang, H., Zhang, L., Gao, B., Fan, H., Jin, J., Botella, M.A., Jiang, L., and Lin, J. (2011). Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS One 6, e26477. https://doi.org/10.1371/journal.pone.0026477