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Abstract 

 
The desirable result of infrared (IR) and visible (VIS) image fusion should have textural details 
from VIS images and salient targets from IR images. However, detail information in the dark 
regions of VIS image has low contrast and blurry edges, resulting in performance degradation 
in image fusion. To resolve the troubles of fuzzy details in dark regions of VIS image fusion, 
we have proposed a method of reflectance estimation for IR and VIS image fusion. In order to 
maintain and enhance details in these dark regions, dark region approximation (DRA) is pro-
posed to optimize the Retinex model. With the improved Retinex model based on DRA, quasi-
Newton method is adopted to estimate the reflectance of a VIS image. The final fusion out-
come is obtained by fusing the DRA-based reflectance of VIS image with IR image. Our 
method could simultaneously retain the low visibility details in VIS images and the high con-
trast targets in IR images. Experiment statistic shows that compared to some advanced ap-
proaches, the proposed method has superiority on detail preservation and visual quality. 
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1. Introduction 

Infrared (IR) images reflecting the thermal radiation emitted by objects are influenced little 
by illumination variations and disguises [1]. Thus, IR imaging has been applied widely, such 
as medical imaging [2], night vision [3] and remote sensing [4], etc. However, it typically 
suffers from the loss of image details and textures. In contrast, visible (VIS) images could 
easily capture the information of the reflectance in target scenes. Hence, VIS images have rich 
details and conform well to the human visual system. Nevertheless, VIS images are sensitive 
to scene variations such as illumination, smoke, rain and disguises so that the targets in VIS 
images maybe not salient. Image fusion is put forward to produce a single fused image with 
both abundant details of VIS images and salient target areas of IR images, harnessing 
adequately of complementary information from IR and VIS images. Therefore, our major 
concern of this work is IR and VIS image fusion. 

In recent years, numerous VIS and IR image fusion approaches have been proposed as 
the demand is burgeoning. Generally, fusion algorithms could be classified into six categories 
[1]: sparse representation, subspace, multi-scale transform, neural network, saliency and 
hybrid models. Studies of sparse representation [5,6] think that an image is a linearly 
combination of sparse basis in an over-complete dictionary. As a result, a source image can be 
resolved into two kinds of layers: detail and base, and following that, the different layers of 
two to-be-fused images are fused by different fusion regulations. Subspace-based methods 
[7,8] can extract the intrinsic structures of the source image by projecting high-dimensional 
image into low-dimensional subspace, in order to remove redundant information from the 
fused image. Multi-scale transformation [9] are actively employed for image fusion, making 
an assumption that a source image could be resolved into a variety of layers. The different 
layers can be fused by certain particular fusion tactic in order to obtain the final fusion. Some 
transform models, such as pyramid [10], wavelet [11],curvelet [12], Gaussian filters [13] and 
non-subsampled contourlet transform (NSCT) [14], are often applied for multi-scale 
decomposition. With the springing up of deep learning techniques, neural network, imitating 
the perceptual behaviour system of the human brain, performs well on image fusion because 
of strong adaptability, fault tolerance and noise immunity [15,16]. Saliency-based methods 
[17,18] could enhance the visual effect of the fused image by using human visual attention. 
The sixth category is hybrid methods [19,20] combining the superior properties of various 
fusion algorithms. Take an instance, Yin et al. [21] proposed a hybrid strategy for IR and VIS 
image fusion based on sparse representation and shift-invariant dual-tree complex shearlet 
transformation. Recently, with the development of deep learning, some relative fusion 
approaches have emerged. Convolutional neural network [22,23] and generative adversarial 
network [24] have been applied successfully.  

Essentially, the abovementioned approaches pay special attention to the extraction of 
detail information from IR and VIS images to ensure rich textures of the fused outcome. 
However, as for IR images, people are more interested in salient targets than details. Therefore, 
the high-contrast property in IR images is more valuable to image fusion. If only textures are 
considered for image fusion, the benefit of the thermal radiation in IR images will disappear. 
Several methods are proposed for this issue, such as gradient transfer fusion (GTF) [25], fusion 
generative adversarial network [26], image fusion via detail preserving adversarial learning 
[1]. The main idea of these methods is that the detail information from VIS images is fused 
with the intensity information of the thermal radiation in IR images. Thus, the performance of 
detail preservation directly determines fusion performance. However, the visual quality of VIS 
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images is greatly influenced by illumination conditions. In the bright regions of VIS images, 
the textures of objects are clear so that they are easily captured and remained in the fused 
images. Nevertheless, the detail information of dark regions suffer from low contrast, blurry 
edges and high noise. These raise a tough challenge for detail preservation and will blur the 
targets in fusion results.  

Retinex decomposition [27], regarding the captured picture as the outcome of 
illumination and reflectance layers, is often used for reflectance estimation to recover details 
from the captured images. The Retinex model has been applied well to image enhancement, 
dehazing, fusion and denoising [28]. However, since the details of dark regions in the source 
images are easily lost in reflectance recovery using the Retinex model [29], the performance 
of detail preservation on image fusion is limited.  

In this work, IR and VIS image fusion via evaluating reflectance with dark region 
approximation (DRA) is introduced to overcome the abovementioned challenges. At first, the 
DRA is proposed for the Retinex model to preserve more details of those dark regions in VIS 
images when processing reflectance estimation. After that, derived from Retinex model with 
DRA, reflectance estimation could be formulated as an unconstrained optimization problem 
through Gaussian field criterion and then solved by the quasi-Newton method. Finally, DRA-
based reflectance estimated from VIS image is fused with IR image by a strategy called 
Gamma correction. Qualitative and quantitative comparisons of the method in this paper and 
3 advanced strategies are conducted on a public dataset. Unlike the counterparts, our fusion 
work can illuminate the dark regions of VIS images and produce the fused images with 
highlighted details that have even low visibility in the source images.  

The contributions of this paper lie in two aspects: 
1) Reflectance estimation on the DRA-version is developed to exploit detail information 

from the bright and dark regions of VIS images via two different imaging models respectively. 
Consequently, our fused images have abundant details and high visibility. 

2) Because reflectance estimation based on the DRA is formulated as an unconstrained 
optimization problem that can be solved by gradient-based numerical optimization technology, 
our method has a straightforward structure and is easy to be implemented in real applications. 

The rest of this paper is unfolded as following. Section 2 presents some basic theories 
and implementation details of our method. Experiment results and discussion are shown in 
Section 3. Finally, the concluding remarks are given in Section 4. 

2. Methodology 
In this part, we describe the basic theory of the DRA and present the implementation details 
of the proposed method. Fig. 1 shows the framework of our approach. 
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Fig. 1. Framework of the proposed method. Firstly, utilizing DRA, the reflectance is estimated from 

the VIS image. The IR image is then fused with the DRA-based reflectance layer of the VIS image by 
a fusion strategy based on Gamma correction. 

 

2.1 Dark Region Approximation (DRA) 
In the Retinex model, one VIS image denoted by 𝐋𝐋 is the element-wise multiplication of 

two layers, namely an illumination layer 𝐓𝐓 and a reflectance layer 𝐑𝐑 
 𝐋𝐋 = 𝐑𝐑 ∘ 𝐓𝐓, (1) 

Eq. (1) could be expressed in logarithmic domain, given as 
 𝐋̂𝐋 = 𝐑𝐑� + 𝐓𝐓�, (2) 

in which 
 𝐋̂𝐋 = log(𝐋𝐋), 
 𝐑𝐑� = log(𝐑𝐑), thought as a map describing detailed structures of the object. 
 𝐓𝐓� = log(𝐓𝐓).   

In some previous-proposed Retinex image enhancement algorithm, like single-scale 
Retinex (SSR) [30] and multi-scale Retinex (MSR) [31], the reflectance 𝐑𝐑�  is 𝐋̂𝐋 minus its 
Gaussian-filtered value 𝐓𝐓� (that is , 𝐑𝐑� = 𝐋̂𝐋 − 𝐓𝐓�). Whereas, the decomposition of VIS image into 
bright and dark regions gives rise to practical problems about Retinex model so that above 
expression 𝐑𝐑� = 𝐋̂𝐋 − 𝐓𝐓� changes to  
 𝐑𝐑� = 𝐑𝐑�𝐿𝐿 + 𝐑𝐑�𝐻𝐻 = �𝐋̂𝐋𝐿𝐿 − 𝐓𝐓�𝐿𝐿�+ �𝐋̂𝐋𝐻𝐻 − 𝐓𝐓�𝐻𝐻�, (3) 

R�, L� and T� with certain subscript means these are relative region of R�, L� and T� respectively. 
Subscript 𝐿𝐿  means the dark region while 𝐻𝐻  indicates the bright region. Thanks to good 
illumination, the discrepancy between 𝐋̂𝐋𝐻𝐻 and 𝐓𝐓�𝐻𝐻 are apparent. That is to say, the structural 
details 𝐑𝐑�𝐻𝐻  could be remained well in 𝐑𝐑� . However, due to the weak intensity of 𝐋̂𝐋𝑳𝑳 , the 
intensity of  𝐓𝐓�𝑳𝑳  merely stays at a low level. As a result, there is no significant discrepancy 
between 𝐋̂𝐋𝐿𝐿 and 𝐓𝐓�𝐿𝐿 in comparison with 𝐑𝐑�𝐻𝐻, which demonstrates that the detail loss of dark 
regions (, losing 𝐑𝐑�𝐿𝐿, ) is more likely to happen in 𝐑𝐑�. Fig. 2 is a descriptive graph of Retinex 
model based reflectance estimation.  It could be seen that details in the blue box (a bright 
region) is more distinguishable and  apparent than those in the red box (a dark region). 
Correspondingly, the direct reflectance estimation in logarithmic space loses the details we 
need [26]. 
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Fig. 2.  Descriptive graph of Retinex model-based reflectance estimation. 𝐓𝐓G, a Gaussian-filtered 

form of 𝐋𝐋, is the illumination layer. An estimated reflectance 𝐑𝐑G is 𝐋̂𝐋 − 𝐥𝐥𝐥𝐥𝐥𝐥(𝐓𝐓G).  The red and blue 
box is dark and bright area separately. 

 
Observing the dark regions, then we put forward DRA: assuming there is few 

illuminations in the dark area i.e. 𝐓𝐓�𝐿𝐿 = 𝟎𝟎.  Then Eq. (3) is modified as Retinex model  in DRA 
version as (4): 
 𝐑𝐑� = 𝐑𝐑�𝐿𝐿 + 𝐑𝐑�𝐻𝐻 ≈ 𝐋̂𝐋𝐿𝐿 + �𝐋̂𝐋𝐻𝐻 − 𝐓𝐓�𝐻𝐻�. (4) 

With DRA’s participation, the intensity distribution in dark areas could be thought as the 
reflectance in VIS images.  Examining Eq. (3) and (4), it looks obvious that 𝐋̂𝐋𝐿𝐿 > 𝐋̂𝐋𝐿𝐿 − 𝐓𝐓�𝐿𝐿, 
indicating the details of dark regions in 𝐑𝐑� has been enhanced. The DRA-based Retinex model 
reconciles the details of bright and dark regions in 𝐑𝐑�.  

But how to distinguish 𝐋̂𝐋𝐿𝐿 and 𝐋̂𝐋𝐻𝐻? This hanging matter prevents model (4) from being 
utilized directly on reflectance recovery. In the following section, we will solve this issue. 

2.2 DRA-based reflectance estimation 
2.2.1 Objective function  

It is common sense that illuminating an object partly arouses reflectance so that we 
defined the reflectance 𝐑𝐑� as a map function 𝜓𝜓 relying on the illumination layer 𝐓𝐓� and then (2) 
is rewritten as  
 𝐋̂𝐋 = 𝜓𝜓�𝐓𝐓�� + 𝐓𝐓�. (5) 

With Eq. (5), adopting Gaussian field criterion to construct an objective function for 
solving the map function 𝜓𝜓 . The objective function based on Gaussian-field is given by 
 

min
𝜓𝜓

𝐸𝐸(𝜓𝜓) = min
𝜓𝜓

−� exp �−
�𝐋̂𝐋𝑖𝑖 − �𝜓𝜓�𝐓𝐓�𝑖𝑖� + 𝐓𝐓�𝑖𝑖��

2

2𝜎𝜎2 �
𝑀𝑀

𝑖𝑖=1

, (6) 

𝜎𝜎 is a range parameter, 𝑀𝑀 is pixels’ quantity in 𝐋̂𝐋. 𝐋̂𝐋𝑖𝑖 and 𝐓𝐓�𝑖𝑖 is the intensity of the 𝑖𝑖-th pixel in 
𝐋̂𝐋 and 𝐓𝐓�, separately. The objective function emphasizes the closeness between 𝐋̂𝐋 − 𝐓𝐓� and map 
function𝜓𝜓�𝐓𝐓��. With the merits of continuous differentiability and convenient computation, 
Gaussian field criterion is a good distance measurement. Otherwise, this criterion in (6) lays a 
solid grounding on the distinguishment of the two regions in single-channel images, about 
which would be talked later. 

 
2.2.2 Reflectance model 

In our research, reflectance is seen as one kind of transformation of illumination. It is 
supposed that a regular pattern of the transformation may exist in VIS image. Therefore, the 
previous mentioned map function 𝜓𝜓 (, that is, the reflectance model) could be given as (7) 
 

𝜓𝜓𝑁𝑁�𝐓𝐓�𝑖𝑖� = ���𝛼𝛼𝑛𝑛𝑛𝑛𝑥𝑥𝑖𝑖𝑘𝑘𝑦𝑦𝑖𝑖𝑛𝑛−𝑘𝑘
𝑛𝑛

𝑘𝑘=0

+ 𝛽𝛽𝑛𝑛𝐓𝐓�𝑖𝑖𝑛𝑛�
𝑁𝑁

𝑛𝑛=1

, (7) 
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𝛼𝛼𝑛𝑛𝑛𝑛 and 𝛽𝛽𝑛𝑛: reflectance parameters. 
𝑁𝑁: order of the reflectance model. 
[𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖]T: coordinate vector of the 𝑖𝑖𝑡𝑡ℎ pixel. 
The first term of (7) represents the spacial distribution of the reflectance. Another term 

expresses the regular pattern of the transformation from illumination to reflectance. 
Fundamentally, the reflectance model is a mixture of diverse polynomials depending on 

intensity values and coordinate vectors, whose highly nonlinearity helps to represent the 
complex pattern in reflectance. 

Write (7) in the matrix form: 
 𝜓𝜓𝑁𝑁�𝐓𝐓�𝑖𝑖� = 𝐂𝐂𝑁𝑁𝐏𝐏𝑖𝑖𝑁𝑁 = �𝐜𝐜𝑐𝑐𝑁𝑁  � 𝐜𝐜𝑑𝑑𝑁𝑁� �𝐩𝐩𝑐𝑐𝑐𝑐𝑁𝑁  � 𝐩𝐩𝑑𝑑𝑑𝑑𝑁𝑁 �

T, (8) 
where 𝐜𝐜𝑐𝑐𝑁𝑁 = [𝛼𝛼10,𝛼𝛼11,𝛼𝛼20,𝛼𝛼21,𝛼𝛼22,⋯ ,𝛼𝛼𝑁𝑁𝑁𝑁] is the 1 × 𝑁𝑁𝑝𝑝�𝑁𝑁𝑝𝑝 = 𝑁𝑁(𝑁𝑁 + 3) 2⁄ � dimensional 
vector including every 𝛼𝛼𝑛𝑛𝑛𝑛  of the first term in Eq. (7). 𝐜𝐜𝑑𝑑𝑁𝑁 = [𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑁𝑁] is the 1 × 𝑁𝑁 
dimensional vector including every 𝛽𝛽𝑛𝑛 of the second term in (7). Thus 𝐂𝐂𝑁𝑁 is the 1 × �𝑁𝑁𝑝𝑝 + 𝑁𝑁� 
dimensional reflectance parameter vector. 𝐩𝐩𝑐𝑐𝑐𝑐𝑁𝑁  is the 1 × 𝑁𝑁𝑝𝑝  dimension vector including all 
𝑥𝑥𝑖𝑖𝑘𝑘𝑦𝑦𝑖𝑖𝑛𝑛−𝑘𝑘 and 𝐩𝐩𝑑𝑑𝑑𝑑𝑁𝑁  is the 1 × 𝑁𝑁 −dimension vector including every  𝐓𝐓�𝑖𝑖𝑛𝑛. Therefore, 𝐏𝐏𝑖𝑖𝑁𝑁 is the 
�𝑁𝑁𝑝𝑝 + 𝑁𝑁� × 1  dimensional polynomial vector of the 𝑖𝑖 -th pixel in 𝐓𝐓� . [∙]T  is matrix 
transposition.  

Substituting (8) into (6), the optimization function would be 
 

min
𝐂𝐂𝑁𝑁

𝐸𝐸(𝐂𝐂𝑁𝑁) = min
𝐂𝐂𝑁𝑁

−� exp �−
�𝐋̂𝐋𝑖𝑖 − 𝐂𝐂𝑁𝑁𝐏𝐏𝑖𝑖𝑁𝑁 − 𝐓𝐓�𝑖𝑖�

2

2𝜎𝜎2 �
𝑀𝑀

𝑖𝑖=1

. (9) 

 
2.2.3 Optimization 

It could be observed that Eq. (9) is continuously differentiable to 𝐂𝐂𝑁𝑁 , the reflectance 
parameter. Owing to the proposed model in the form of polynomial, it is not hard to derive (9) 
correspondingly as  below: 
 𝜕𝜕𝐸𝐸(𝐂𝐂𝑁𝑁)

𝜕𝜕𝐂𝐂𝑁𝑁
=

1
𝜎𝜎2

�𝐏𝐏𝑖𝑖𝑁𝑁�𝐂𝐂𝑁𝑁𝐏𝐏𝑖𝑖𝑁𝑁 + 𝐓𝐓�𝑖𝑖−𝐋̂𝐋𝑖𝑖�exp �−
�𝐋̂𝐋𝑖𝑖 − 𝐂𝐂𝑁𝑁𝐏𝐏𝑖𝑖𝑁𝑁 − 𝐓𝐓�𝑖𝑖�

2

2𝜎𝜎2 �
𝑀𝑀

𝑖𝑖=1

. (10) 

With the derivation (10), it could be accepted that solving 𝐂𝐂𝑁𝑁, the optimal parameter, with 
gradient-based numerical optimization approaches, for instance, quasi-Newton method [32]. 
Prior to that, the acquisition of the illumination layer 𝐓𝐓 is still a hard nut to crack in estimating 
reflectance. It is an ill-posed problem to estimate the illumination and reflectance layers from 
the captured image in the meantime [33], which objective function (9) and derivation (10) both 
fail to solve, making the illumination layer determination must be earlier than reflectance 
estimation.  

 
2.2.4  Illumination layer calculation 

According to objective function (9), it is obvious that we deem reflectance estimation to 
a fitting problem. The captured image 𝐋̂𝐋  and the illumination 𝐓𝐓�  are known data. The 
reflectance model (7) is a fitting function while the objective function is a fitting criterion 
aiming at making the reflectance model approximate to 𝐋̂𝐋 − 𝐓𝐓�. Since this model is made up of 
polynomials, it could illustrate the regular pattern of the reflectance, 𝐑𝐑� = 𝐋̂𝐋 − 𝐓𝐓�. In some 
previous-proposed Retinex image enhancement algorithm like SSR and MSR, the illumination 
layer is often gotten from the Gaussian-filtered captured image. If the objective function is 
optimized by Gaussian-filtered illumination layer acquired by 𝐓𝐓�G = log(𝐓𝐓G), the reflectance 
estimation might have similar defect to direct-estimated reflectance as in Section 2.1. 
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The penalty curve plotted in Fig. 3 shows the Gaussian criterion is pretty tolerant to large 
𝑥𝑥  (e.g. 1 − exp {−𝑥𝑥2 (2𝜎𝜎2)⁄ }) , indicating the property of poor response to large 𝑥𝑥 , with 
which coarse blur is introduced to obtain the illumination and to estimate reflectance by DRA-
based Retinex model (4) then. 

 

 
Fig. 3. Penalty curve of Gaussian criterion 

 
 

To be frankly, the process of coarse blur is pretty straightforward. Make the pixel value 
zero if the parity of its 𝑥𝑥 and 𝑦𝑦 coordinates numbers are the same, and then the Gaussian-based 
illumination layer 𝐓𝐓�G is further degraded (as shown in Fig. 4). 𝐓𝐓�𝑖𝑖C is the pixel value in the 
coarse-blur-based illumination layer 𝐓𝐓�C. When optimizing the objective function (9) with 
𝐓𝐓�𝑖𝑖C ≠ 0 pixels, we fit the reflectance model to the differences between 𝐋̂𝐋 and 𝐓𝐓�G. On condition 
that 𝐓𝐓�𝑖𝑖C is non-zero, the reflectance model is more willing to show reflectance’s regular pattern 
of bright area with Retinex model.  

At the same time, if 𝐓𝐓�𝑖𝑖C = 0, the term �𝐋̂𝐋𝑖𝑖 − �𝜓𝜓�𝐓𝐓�𝑖𝑖C� + 𝐓𝐓�𝑖𝑖C��
2
 in the objective function 

would be �𝐋̂𝐋𝑖𝑖 − 𝜓𝜓�𝐓𝐓�𝑖𝑖C��
2

. The objective function responses weakly to large numbers of 
�𝐋̂𝐋𝑖𝑖 − 𝜓𝜓�𝐓𝐓�𝑖𝑖C��

2
in Fig. 3. Thus, we could fit the reflectance to the weak intensities of the 

captured picture by arranging a suitable value of the range parameter 𝜎𝜎.  This is to say, when 
𝐓𝐓�𝑖𝑖C = 0, the reflectance model is prone to show the intensity distribution’s regular pattern in 
the dark regions. 

With Eq. (9), we could initially set a soft threshold to make decomposition of a single-
channel picture into bright and dark areas. Followed by modelling the reflectance layer of 
these areas by 𝐑𝐑�𝐻𝐻 = 𝐋̂𝐋𝐻𝐻 − 𝐓𝐓�𝐻𝐻  and 𝐑𝐑�𝐿𝐿 = 𝐋̂𝐋𝐿𝐿  respectively.  Ending with reconciling the 
reflectance’s regular patterns in bright and dark areas with the reflectance model. Therefore, 
the objective function attaching the coarse-blurred illumination layer estimates the optimal 
reflectance model and it is this model that could express the regular patterns with 𝐑𝐑� = 𝐋̂𝐋𝐿𝐿 +
�𝐋̂𝐋𝐻𝐻 − 𝐓𝐓�𝐻𝐻�, DRA-based Retinex model.  

After determining the optimal reflectance model, DRA-based reflectance layer 𝐑𝐑C is 
 𝐑𝐑C = exp�𝜓𝜓𝑁𝑁C�𝐋̂𝐋��, (11) 

where 𝜓𝜓𝑁𝑁C  is the N-dimensional optimal reflectance model. 
Making a comparison between the DRA-estimated reflectance estimation in Fig. 4 and 

the direct-estimated reflectance in Fig. 2, it is salient that DRA-based reflectance makes details 
in bright regions more clear and illuminates those in dark regions as well.  
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Fig. 4. DRA-based reflectance estimating. 𝐓𝐓C is the coarse-blurred illumination layer from 𝐓𝐓G. The 

red rectangle means a dark region and the blue rectangle means a bright region. 
 

Fig. 5 presents several DRA-based results of reflectance estimation of VIS images. We 
could see that the DRA-based reflectance layers have abundant details and good contrast both 
in the dark and the bright regions. Some details hard to observe in the source images are more 
salient in the DRA-based reflectance layers.  

 

 
Fig. 5. DRA-based results of reflectance estimation from VIS images. From top to bottom: VIS 

images and the corresponding DRA-based reflectance layers. The regions pointed by the arrows are 
the dark regions. 

2.3 Fusion based on Gamma correction 
According to the DRA-based reflectance, a strategy based on Gamma correction is 

developed to IR and VIS image fusion, which could be formulated as 
 𝐅𝐅 = 𝐋𝐋𝑖𝑖𝑖𝑖 ⋄ �𝐑𝐑𝑣𝑣𝑣𝑣𝑣𝑣

C + 𝐭𝐭�, (12) 
where the operator ⋄  denotes element-wise power. 𝐅𝐅  denotes the final fusion result. 𝐋𝐋𝑖𝑖𝑖𝑖 
denotes IR image and 𝐑𝐑𝑣𝑣𝑣𝑣𝑣𝑣

C  denotes the DRA-based reflectance of VIS image. The intensity 
ranges of IR and VIS images have to be scaled into [0,1]. 𝐭𝐭 is a threshold matrix which has the 
same size with 𝐑𝐑𝑣𝑣𝑣𝑣𝑣𝑣

C   and the every element is defined as 𝐭𝐭𝑖𝑖 = 1 − otsu(𝐑𝐑𝑣𝑣𝑣𝑣𝑣𝑣C ) , where 
otsu(𝐑𝐑𝑣𝑣𝑣𝑣𝑣𝑣C ) represents the threshold calculated from 𝐑𝐑𝑣𝑣𝑣𝑣𝑣𝑣

C  by OTSU algorithm [34].  
By using the Eq. (12), the details estimated from VIS images by the DRA-based Retinex 

model are fused with IR images, because the Gamma value of each pixel in IR images is 
evaluated according to 𝐑𝐑𝑣𝑣𝑣𝑣𝑣𝑣

C . Moreover, according to the threshold matrix 𝐭𝐭, the Gamma values 
of the pixels with low intensity in VIS images are greater than 1, while those of the pixels with 
high intensity are less than 1. As a result, the contrast of the final fusion can be enhanced 
further. The process of our method is outlined in Algorithm 1.  
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Algorithm 1. Image fusion using DRA reflectance estimation 
Input: VIS image 𝐋𝐋𝑣𝑣𝑣𝑣𝑣𝑣, IR image 𝐋𝐋𝑖𝑖𝑖𝑖 , the order 𝑁𝑁 of the reflectance model, range parameter 𝜎𝜎  
1. 𝐋̂𝐋𝑣𝑣𝑣𝑣𝑣𝑣 = log(𝐋𝐋𝑣𝑣𝑣𝑣𝑣𝑣);  
2. Deduce coarse-blurred illumination 𝐓𝐓�𝒗𝒗𝑖𝑖𝑖𝑖C  from 𝐋𝐋𝑣𝑣𝑣𝑣𝑣𝑣; 
3. Estimate 𝜓𝜓𝑁𝑁C , the optimal reflectance model, with  quasi-Newton method via Eq. (9) & (10); 
4. Obtain DRA-based reflectance 𝐑𝐑𝑣𝑣𝑣𝑣𝑣𝑣

C  by Eq. (11) with 𝜓𝜓𝑁𝑁C ; 
5. Calculate the fused image 𝐅𝐅 via Eq. (12). 
Output: 𝐅𝐅 , final fusion result  

3. Experiment 

3.1 Parameter setting 
Algorithm 1 tells us we need 2 input parameters: the range parameter 𝜎𝜎 and the order 𝑁𝑁, 

determining the width of the response range of Gaussian fields criterion in the objective 
function (9) and the nonlinearity of the reflectance model, respectively. Here, after plenty of 
trials, we got the optimal setting is 𝜎𝜎 = 0.6 and 𝑁𝑁 = 4. In addition, because we map the grey 
range of the input image into [0,1], the optimal 𝜎𝜎 and 𝑁𝑁  would be similar on different samples.  

3.2 Dataset 
The dataset tested in this work contains 30 pairs of IR and VIS images from TNO dataset1 

containing aligned pairs of IR and VIS image. To explore the fusion performance of the 
proposed way, we compare it with 3 fusion methods, namely, two-scale image fusion based 
on visual saliency (TSIFVS) [35], GTF [25] and image fusion based on gradient transfer 
optimization model (GTOM) [36]. All of these methods are programmed in Matlab and  
parameters set goes along with original papers. Each experiment is managed on a computer 
with the configuration of  Windows 10 OS (64 bits) with Intel Core i7-9700K CPU @3.60GHz 
and 16GB RAM. The average runtime of our method is 2.42 seconds for a pair of IR and VIS 
images with 620×450 pixels. 

3.3 Qualitative comparison 
We pick up 30 pairs of IR and VIS images from TNO dataset as the testing set of 

qualitative comparison. Five typical pairs are selected for qualitative illustration from the 
testing set as Fig. 6.  

The original IR and VIS images are located at the first two columns of Fig. 6. The fusion 
results of our method are shown in the 3rd row, while the rest of Fig. 6 correspond to the 
results of the other approaches. It is apparent that all methods could to some extent fuse the 
information from the original IR and VIS images. However, from the qualitative comparison 
we can see that compared to the competitors, our method have an advantage on detail 
preservation. For instance, in our fusion images of Fig. 6(a) and (b), the brightness of the dark 
regions in the VIS images has substantial growth. Hence, the hard-visible details in the original 
VIS images, such as shrubs and trees, are preserved and enhanced in our fusion results. From 
Fig. 6(c) we can see that the texture of the jeep has high saliency in the image fusion of our 
method. As for Fig. 6(d), the targets, such as vehicle, signpost and street lamp, have good 
visibility in our fusion result. On the contrary, the detail of VIS images is not well preserved 
by TSIFVS, GTF and GTOM. Undoubtedly, the superiority of our approach on preserving 

 
1 http://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029. 
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details thanks to the DRA-based reflectance estimated from VIS images. Furthermore, 
exploiting the details information of the dark areas of VIS images via DRA-based reflectance 
estimation is very helpful to improve the visibility of fused images.  

In the boxes of Fig. 6(e), the details in the IR image are more salient than those in the 
VIS image. From the fused images of the competitors, we can see that although the content of 
IR and VIS images are fused, details from the IR image become rather blurry. This is because 
the fused image suffers from the low saliency of the VIS image. It is obvious that our method 
could handle this problem. This demonstrates that the DRA-based reflectance estimated from 
VIS images could retain the salient information of the source images. It is also proved that the 
fusion model (12) could simultaneously preserve the textural detail information of IR and VIS 
images.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 6. Qualitative fusion results of 5 typical pairs of IR and VIS image from TNO dataset. The 
blue&yellow boxes emphasize the area of emerging marked differences between our result and the 

others’. From left: VIS images, IR images, our proposed method, TSIFVS, GTF and GTOM. 

 
(a) 

 
(b) 

Fig. 7. Fusion results on 2 pairs of IR and VIS image pairs with high noise. We have zoomed some 
regions in the box in and put them at the corner of each subplot. From left: VIS images, IR images, 

our proposed method, TSIFVS, GTF and GTOM. 
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Fig. 7 shows the fusion outcome of 2 pairs of IR and VIS image pairs with high noise. We 
can see that noise affects us more slightly than other competitors. The reason is that DRA-
estimated reflectance is able to limit noise via the regularity of the reflectance model (7). 

3.4 Quantitative comparison 
In this work, six metrics are introduced to quantitative evaluation. They are: 
Entropy (EN) [37]: information amount in an image. 
Correlation coefficient (CC) [38]: the degree of linear correlation between the source 

image and the fused image. 
Standard deviation (SD) [39]: the contrast distribution of an image. 
Spatial frequency (SF) [40]: the richness of the textural details of an image. 
Visual information fidelity (VIF) [41]:  the information fidelity of the fused image. 
Structural similarity index measure (SSIM) [42]: the structural similarity between the 

source image and the fused image. 
In terms of these 6 metrics, the larger the value, the better the performance would be. 

 

 
Fig. 8. Quantitative comparison of 6 evaluation metrics on TNO dataset. Three advanced methods, 
TSIFVS, GTF and GTOM, are used for comparison. The numbers in the legends are the average 

values of evaluation metrics. 
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The results of the six metrics are reported in Fig. 8. It is clear that our experiment has the 
best SD, EN, CC, VIF and SF for most pairs of image. Moreover, the mean values of these 5 
metrics of our method respectively are the highest among all these approaches. The highest 
SD indicates that the contrast of our fused images is the best among the approaches. The 
highest EN demonstrates that the information of our fusion results are more abundant than 
those of the competitors. The greatest CC suggests that our fused images have strong 
correlation with the original images. The highest VIF demonstrates that our fused images have 
good visual quality and conforms well to the human visual system. The best SF means that 
there are rich details and textures in our fused images. However, SSIM of our method is 
relatively low because our method have good performance on detail preservation. Some barely 
visible details in the source images could be clearly maintained in our fused images. Moreover, 
our method could simultaneously exploit the textural detail information from IR and VIS 
images. Thus, some areas in our fused images might look neither like VIS images nor like IR 
images, resulting in low structural similarity. A representative example can be seen in Fig. 
6(a), in which the details of the shrubs have low intensity in the VIS image and are not visible 
in the IR image; however, in order to preserve the details in dark regions, the brightness of the 
shrubs in our fused image is increased greatly. Hence, the area of the shrubs in our fused image 
looks neither like VIS images nor like IR images. Similar situation also occurs in the trees of 
Fig. 6(b) and the jeep of Fig. 6(c). 

4. Conclusion 
In this paper, a reflectance estimation way with dark region approximation (DRA) has been 
proposed to IR and VIS image fusion. The performance of Retinex model has been better 
taking advantages of DRA, especially that of  detail preservation of dark regions of VIS images.  
DRA-based reflectance of VIS image with the Gaussian field criterion is evaluated by the 
quasi-Newton method. Then, it is fused with IR image by a strategy based on Gamma 
correction to generate the final fusion result. Qualitative and quantitative comparisons unveil 
the superiority of our method over other advanced approaches on preserving details and visual 
quality.  

Admittedly, the proposed method has done well in our experiments evaluated from many 
respects, however, the high computation complexity of it is still a problem, increasing the 
difficulty in practical applications. Accordingly, we will focus on simplifying the structure of 
our method and improving the time cost of reflectance estimation in future. 
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