DOI QR코드

DOI QR Code

Viscum album and its Constituents Downregulate MMP-13 Expression in Chondrocytes and Protect Cartilage Degradation

  • Lee, Ju Hee (College of Pharmacy, Kangwon National University) ;
  • Kwon, Yong Soo (College of Pharmacy, Kangwon National University) ;
  • Jung, Da Young (College of Pharmacy, Kangwon National University) ;
  • Kim, Na Young (College of Pharmacy, Kangwon National University) ;
  • Lim, Hyun (College of Pharmacy, Kangwon National University) ;
  • Kim, Hyun Pyo (College of Pharmacy, Kangwon National University)
  • Received : 2021.05.25
  • Accepted : 2021.08.16
  • Published : 2021.09.30

Abstract

Under some pathological conditions such as osteoarthritis, matrix metalloproteinases (MMPs) including MMP-13 have an important role in degrading cartilage materials. When the regulatory effects of some herbal extracts on MMP-13 expression were examined to evaluate the cartilage-protective potential, the ethanol extract of the radix of Viscum album was found to strongly downregulate MMP-13 induction in IL-1β-treated chondrocytes, SW1353 cells. Based on this finding, activity-guided separation was carried out, which yielded five constituents identified as 3,5-dihydroxy-1,7-bis(4-hydroxyphenyl)heptane (1), hesperetin-7-glucoside (2), syringin (3), homoflavoyadorinin B (4), and 4,4'-dihydroxy-3,6'-dimethoxychalcone-2'-glucoside (5). Of these, 1 and 5 significantly inhibited MMP-13 expression in SW1353 cells, with 5 being the most potent. Compound 5, a chalcone derivative, showed the downregulation of MMP-13 at 20 - 100 μM. The mechanism study revealed that 5 exerted MMP-13 down-regulatory action, at least in part, by interrupting the signal transducer and activator of transcription 1 (STAT1) activation pathway. Furthermore, this compound protected against cartilage degradation in an IL-1-treated rabbit cartilage explant culture. All these findings demonstrated for the first time that Viscum album and its constituents, especially chalcone derivative (5), possessed cartilage-protective activity. These natural products may have the potential for alleviating cartilage degradation.

Keywords

Acknowledgement

This study was financially supported by BK21-plus project from the Ministry of Education (Korea). Bioassay facility of New Drug Development Inst. (KNU) was used and greatly acknowledged.

References

  1. Klein, T.; Bischoff, R. Amino Acids 2011, 41, 271-290. https://doi.org/10.1007/s00726-010-0689-x
  2. Rose, B. J.; Kooyman, D. L. Dis. Markers 2016, 2016, 4895050. https://doi.org/10.1155/2016/4895050
  3. Lim, H.; Park, H.; Kim, H. P. J. Pharmacol. Sci. 2011, 116, 221-231. https://doi.org/10.1254/jphs.11014FP
  4. Park, H. Y.; Lim, H.; Kim, H. P.; Kwon, Y. S. Planta Med. 2011, 77, 1528-1530. https://doi.org/10.1055/s-0030-1270834
  5. Lee, J. H.; Lim, H.; Shehzad, O.; Kim, Y. S.; Kim, H. P. Eur. J. Pharmacol. 2014, 724, 145-151. https://doi.org/10.1016/j.ejphar.2013.12.035
  6. Lim, H.; Min, D. S.; Yun, H. E.; Kim, K. T.; Sun, Y. N.; Dat, L. D.; Kim, Y. H.; Kim, H. P. J. Ethnopharmacol. 2017, 209, 73-81. https://doi.org/10.1016/j.jep.2017.07.034
  7. Udalamaththa, V. L.; Jayasinghe, C. D.; Udagama, P. V. Stem Cell. Res. Ther. 2016, 7, 110. https://doi.org/10.1186/s13287-016-0366-4
  8. Oei, S. L.; Thronicke, A.; Schad, F. Evid. Based Complement. Alternat. Med. 2019, 2019, 5893017.
  9. Kim, S.; L ee, D.; Kim, J. K.; Kim, J. H.; Park, J. H.; L ee, J. W.; Kwon, J. J. Agric. Food Chem. 2014, 62, 11876-11883. https://doi.org/10.1021/jf503535s
  10. Lee, S. H.; An, H. S.; Jung, Y. W.; Lee, E. J.; Lee, H. Y.; Choi, E. S.; An, S. W.; Son, H.; Lee, S. J.; Kim, J. B.; Min, K. J. Biogerontology 2014, 15, 153-164. https://doi.org/10.1007/s10522-013-9487-7
  11. Han, S. Y.; Hong, C. E.; Kim, H. G.; Lyu, S. Y. Mol. Cell. Biochem. 2015, 408, 73-87. https://doi.org/10.1007/s11010-015-2484-1
  12. Hegde, P.; Maddur, M. S.; Friboulet, A.; Bayry, J.; Kaveri, S. V. PLoS One 2011, 6, e26312. https://doi.org/10.1371/journal.pone.0026312
  13. Saha, C.; Hegde, P.; Friboulet, A.; Bayry, J.; Kaveri, S. V. PLoS One 2015, 10, e0114965. https://doi.org/10.1371/journal.pone.0114965
  14. Sakalli Cetin, E.; Tetiker, H.; Ilhan Celik, O.; Yilmaz, N.; Cigerci, I. H. Complement. Med. Res. 2017, 24, 364-370.
  15. Yokosuka, A.; Mimaki, Y.; Sakagami, H.; Sashida, Y. J. Nat. Prod. 2002, 65, 283-289. https://doi.org/10.1021/np010470m
  16. Nomura, M.; Tokoroyama, T.; Kubota, T. Phytochemistry 1981, 20, 1097-1104. https://doi.org/10.1016/0031-9422(81)83035-X
  17. Ren, Y. L.; Yang, J. S. Chin. Pharm. J. 2001, 36, 590-593. https://doi.org/10.3321/j.issn:1001-2494.2001.09.005
  18. Greca, M. D.; Ferrara, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Phytochemistry 1998, 49, 1299-1304. https://doi.org/10.1016/S0031-9422(98)00092-2
  19. Choi, S. Y.; Chung, S. K.; Kim, S. K.; Yoo, Y. C.; Lee, K. B.; Kim, J. B.; Kim, J. Y.; Song, K. S. J. Korean Soc. Appl. Biol. Chem. 2004, 47, 279-292.
  20. Mabry, T. J.; Markham, K. R.; Thomas, M. B. The systematic identification of flavonoids; Springer-Verlag; Switzerland, 1970, pp 227-250.
  21. Marti-Rodriguez, A. J.; Ticona, J. C.; Jimenez, I. A.; Flores, N.; Fernandez, J. J.; Bazzocchi, I. L. Phytochemistry 2015, 117, 98-106. https://doi.org/10.1016/j.phytochem.2015.06.006
  22. Vogel, S.; Barbic, M.; Jurgenliemk, G.; Heilmann, J. Eur. J. Med. Chem. 2010, 45, 2206-2213. https://doi.org/10.1016/j.ejmech.2010.01.060
  23. Mosmann, T. J. Immunol. Methods 1983, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  24. Lim, H.; Kim, H. P. Arch. Pharm. Res. 2011, 34,109-117. https://doi.org/10.1007/s12272-011-0113-4
  25. Bussing, A.; Schietzel, M. Anticancer Res. 1999, 19, 23-28.
  26. Twardziok, M.; Kleinsimon, S.; Rolff, J.; Jager, S.; Eggert, A.; Seifert, G.; Delebinski, C. I. PLoS One. 2016, 11, e0159749. https://doi.org/10.1371/journal.pone.0159749
  27. Zarkovic, N.; Vukovic, T.; Loncaric, I.; Miletic, M.; Zarkovic, K.; Borovic, S.; Cipak, A.; Sabolovic, S.; Konitzer, M.; Mang, S. Cancer Biother. Radiopharm. 2001, 16, 55-62. https://doi.org/10.1089/108497801750096041
  28. Hemalswarya, S.; Doble, M. Phytother. Res. 2006, 20, 239-249. https://doi.org/10.1002/ptr.1841
  29. Kwon, Y. S.; Chun, S. Y.; Kim, M. K.; Nan, H. Y.; Lee, C.; Kim, S. Am. J. Chin. Med. 2021, 49, 487-504. https://doi.org/10.1142/S0192415X21500221
  30. Bock, P. R.; Hanisch, J.; Matthes, H.; Zanker, K. S. Inflamm. Allergy Drug Targets 2014, 13, 105-111. https://doi.org/10.2174/1871528113666140428103332
  31. Zheng, H.; Takahashi, H.; Murai, Y.; Cui, Z.; Nomoto, K.; Niwa, H.; Tsuneyama, K.; Takano, Y. Anticancer Res. 2006, 26, 3579-3583.
  32. Incorvaia, L.; Badalamenti, G.; Rini, G.; Arcara, C.; Fricano, S.; Sferrazza, C.; Di Trapani, D.; Gebbia, N.; Leto, G. Anticancer Res. 2007, 27, 1519-1525.
  33. Grunwald, B.; Vandooren, J.; Gerg, M.; Ahomaa, K.; Hunger, A.; Berchtold, S.; Akbareian, S.; Schaten, S.; Knolle, P.; Edwards, D. R.; Opdenakker, G.; Kruger, A. Mol. Cancer Res. 2016, 14, 1147-1158. https://doi.org/10.1158/1541-7786.MCR-16-0180
  34. Lim, H.; Kim, H. P. Planta Med. 2007, 73, 1267-1274. https://doi.org/10.1055/s-2007-990220
  35. Stark, G. R.; Darnell Jr, J. E. Immunity 2012, 36, 503-514. https://doi.org/10.1016/j.immuni.2012.03.013
  36. Zhang, W.; Chen, X.; Gao, G.; Xing, S.; Zhou, L.; Tang, X.; Zhao, X.; An, Y. Front. Immunol. 2021, 12, 654406. https://doi.org/10.3389/fimmu.2021.654406
  37. Dai, W.; Liang, Z.; Liu, H.; Zhao, G.; Ju, C. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3259-3264. https://doi.org/10.1080/21691401.2019.1623227
  38. Zhao, J.; Yu, Y.; Wu, Z.; Wang, L.; Li, W. Biomed. Pharmacother. 2017, 91, 1193-1198. https://doi.org/10.1016/j.biopha.2017.04.054
  39. Jin, F.; Liao, L.; Zhu, Y. Int. J. Immunogenet. 2021, doi: 10.1111/iji.12534.
  40. Zerrouk, N.; Miagoux, Q.; Dispot, A.; Elati, M.; Niarakis, A. Sci. Rep. 2020, 10, 16236. https://doi.org/10.1038/s41598-020-73147-4