DOI QR코드

DOI QR Code

AERMOD를 이용한 축산 미세먼지, 초미세먼지, 암모니아 배출의 대기확산 영향도 분석

Atmospheric Dispersion of Particulate Matters (PM10 and PM2.5) and Ammonia Emitted from Livestock Farms Using AERMOD

  • Lee, Se-Yeon (Department of Rural and Bio-systems Engineering & Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University) ;
  • Park, Jinseon (AgriBio Institute of Climate Change Management, Chonnam National University) ;
  • Jeong, Hanna (Department of Rural and Bio-systems Engineering & Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University) ;
  • Choi, Lak-Yeong (Department of Rural and Bio-systems Engineering & Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University) ;
  • Hong, Se-Woon (Department of Rural and Bio-systems Engineering & AgriBio Institute of Climate Change Management & Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University)
  • 투고 : 2021.05.27
  • 심사 : 2021.08.05
  • 발행 : 2021.09.30

초록

The particulate matters (PM10 and PM2.5) and ammonia emitted from livestock farms as dispersed to urban and residential areas can increase the public's concern over the health problem, social conflicts, and air quality. Understanding the atmospheric dispersion of such matters is important to prevent the problems for the regulatory purposes. In this study, AERMOD modeling was performed to predict the dispersion of livestock particulate matters and ammonia in Gwangju metropolitan city and five surrounding cities. The five cities were divided into 40 sub-zones to model the area-based emissions which varied with the number of livestock farms, species and growth stages of the animals. As a result, the concentrations of PM10, PM2.5 and ammonia resulted from livestock farms located in the surrounding cities were 2.00 ㎍ m-3, 0.30 ㎍ m-3 and 0.04 ppm in the southwestern part of Gwangju based on the average concentration of 1 hour. These values accounted for 0.7% of PM10 concentration, 0.5% of PM2.5 concentration, and 0.4% of the ammonia concentration in Gwangju, contributing to a small amount of air pollution compared to other sources. As preventive measures, the plantation was applied to high emission source areas to reduce particulate matters and ammonia emissions by 35% and 31%, respectively, and resulted in decrease of the area of influence by 57% for particulate matters and 59% for ammonia.

키워드

과제정보

본 논문은 농촌진흥청 연구사업 (PJ0142062021)의 지원에 의해 이루어진 것임.

참고문헌

  1. Abdel-Rahman, A. A., 2008. On the atmospheric dispersion and Gaussian plume model. In Wsai'08: Proceedings of the 2nd International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate, 31-39.
  2. Asman, W. A., 2008. Entrapment of ammonia, odour compounds, pesticide sprays and pathogens by shelterbelts. DJF Plant Science, 135.
  3. Environmental Protection Agency (EPA), 2004a. AERMOD: Description of model formulation. United States.
  4. Environmental Protection Agency (EPA), 2004b. User's guide for the AERMOD terrain preprocessor (AERMAP). United States.
  5. Environmental Protection Agency (EPA), 2004c. User's guide for the AERMOD meteorological preprocessor (AERMET). United States.
  6. Environmental Protection Agency (EPA), 2018. AERMOD model formulation and evaluation. EPA-454/R-18-003. Research Triangle Park, NC.
  7. European Environmental Agency (EEA), 2006. EMEP/CORINAIR emission inventory guidebook.
  8. European Environmental Agency (EEA), 2007. EMEP/CORINAIR emission inventory guidebook.
  9. Hadlocon, L. S., L. Y. Zhao, G. Bohrer, W. Kenny, S. R. Garrity, J. Wang, B. Wyslouzil, and J. Upadhyay, 2015. Modeling of particulate matter dispersion from a poultry facility using AERMOD. Journal of the Air and Waste Management Association 65(2): 206-217. doi:10.1080/10962247.2014.986306.
  10. Heckel, P. F., and G. K. LeMasters, 2011. The use of AERMOD air pollution dispersion models to estimate residential ambient concentrations of elemental mercury. Water, Air, and Soil Pollution 219(1): 377-388. doi:10.1007/s11270-010-0714-4.
  11. Hernandez, G., S. Trabue, T. Sauer, R. Pfeiffer, and J. Tyndall, 2012. Odor mitigation with tree buffers: Swine production case study. Agriculture, Ecosystems and Environment 149: 154-163. doi:10.1016/j.agee.2011.12.002.
  12. International Agency for Research on Cancer (IARC), 2013. Outdoor air pollution a leading environmental cause of cancer deaths. Press release No. 221.
  13. Iowa Department of Natural Resources (IDNR), 2004. Animal feeding operations technical workgroup report.
  14. Jang, D. H., K. S. Kwon, J. B. Kim, J. K. Kim, K. Y. Yang, S. M. Choi, and Y. N. Jang, 2021. Investigation and analysis of particulate-matters and ammonia concentrations in mechanically ventilated broiler house according to seasonal change, measurement locations and age of broilers. Journal of The Korean Society of Agricultural Engineers 63(1): 75-87 (in Korean). doi:10.5389/KSAE.2021.63.1.075.
  15. Jeong, S. J., 2011. Estimation of odor emissions from industrial sources and their impact on residential areas using the AERMOD dispersion model. Journal of Korean Society for Atmospheric Environment 27(1): 87-96 (in Korean). doi:10.5572/KOSAE.2011.27.1.087.
  16. Jeong, S. J., 2018. A study on separation distance of a standard pig farm odor in Gyeonggi-do using the AERMOD model. Journal of Odor and Indoor Environment 17(3):250-256 (in Korean). doi:10.15250/ joie.2018.17.3.250.
  17. Jung, W. S., and H. D. Kim, 2012. A study on solid waste disposal site using the atmosphere diffusion models in Daegu. Journal of Nakdong River Environmental Research Institute 16(1): 193-206 (in Korean).
  18. Kesarkar, A. P., M. Dalvi, A. Kaginalkar, and A. Ojha, 2007. Coupling of the weather research and forecasting model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India. Atmospheric Environment 41(9): 1976-1988. doi:10.1016/j.atmosenv.2006.10.042.
  19. Kim, S., C. Bae, B. U. Kim, and H. C. Kim, 2017. PM2.5 simulations for the Seoul metropolitan area: (I) contributions of precursor emissions in the 2013 CAPSS emissions inventory. Journal of Korean Society for Atmospheric Environment 33(2): 139-158 (in Korean). doi:10.5572/KOSAE.2017.33.2.139.
  20. Kim, T. W., 2009. A study on the odor pollutants (NH3, H2S) of livestock facilities on thee highway. Master. diss., Seoul, Korea: University of Seoul.
  21. Kim, H. S., 2019. Changes in SO2 pollution by clustering of individual location factories scattered throughout Gimpo city. Journal of Environmental Impact Assessment 28(4):413-426 (in Korean). doi:10.14249/eia.2019.28.4.413.
  22. Kim, I. S., C. H. Yang, H. J. Hu, and J. G. Sung, 2014. Emission dispersion analysis based on the development density associated with urban planning (a case study of the Delft city on Netherlands). International Journal of Highway Engineering 16(3): 21-33 (in Korean). doi:10.7855/IJHE.2014.16.3.021.
  23. Lee, S. W., H. C. Kim, and I. H. Seo, 2020. Monitoring of internal harmful factors according to environmental factors in pig farm, Journal of The Korean Society of Agricultural Engineers 62(1): 105-115 (in Korean). doi:10.5389/KSAE.2020.62.1.105.
  24. Ministry of environment (MOE), 2014. National institute of environmental sciences air quality integrated forecast center (in Korean).
  25. Ministry of environment (MOE), 2017. Air pollution emissions statistic (in Korean).
  26. Moon, N. K., 2005. The application of air quality models on environment impact assessment, 20-21. RE- 19. Korea Environment Institute (in Korean).
  27. Myong, J. P., 2016. Health effects of particulate matter. Korean Journal of Medicine 91(2): 106-113 (in Korean). doi:10.3904/kjm.2016.91.2.106.
  28. National Institute of Environmental Research (NIER), 2008. Atmospheric ammonia emission measurement and inventory (II) (in Korean).
  29. National Institute of Environmental Research (NIER), 2013. National air pollutant emission calculation method manual (III) (in Korean).
  30. National Institute of Environmental Research (NIER), 2017. National air pollutants emission (in Korean).
  31. O'Shaughnessy, P. T., and R. Altmaier, 2011. Use of AERMOD to determine a hydrogen sulfide emission factor for swine operations by inverse modeling. Atmospheric Environment 45(27): 4617-4625. doi:10.1016/j.atmosenv.2011.05.061.
  32. Park, J. S., H. N. Jeong, and S. W. Hong, 2020. Estimation of particulate matter and ammonia emission factors for mechanically-ventilated pig houses, Journal of The Korean Society of Agricultural Engineers 62(6): 33-42 (in Korean). doi:10.5389/KSAE.2020.62.6.033.
  33. Adrizal, Patterson, P. H., R. M. Hulet, R. M. Bates, D. A. Despot, E. F. Wheeler, P. A. Topper, D. A. Anderson, and J. R. Thompson, 2008. The potential for plants to trap emissions from farms with laying hens: 2. Ammonia and dust. Journal of Applied Poultry Research 17(3): 398-411. doi:10.3382/japr.2007-00014.
  34. Pronk, A., N. Ogink, H. J. Holterman, P. Hofschreuder, and I. Verneij, 2013. Effecten van groenelementen op de luchtkwaliteit. rapport 493. Wageningen UR: Plant Research International.
  35. Radon, K., C. Weber, M. Iversen, B. Danuser, S. Pedersen, and D. Nowak, 2001. Exposure assessment and lung function in pig and poultry farmers. Occupational and Environmental Medicine 58(6): 405-410. doi:10.1136/oem.58.6.405.
  36. Sung, M. Y., J. S. Park, H. L. Jeong, H. Y. Park, and S. Y. Cho, 2020. A long term trend of gaseous and particulate acid/base species and effects of ammonia reduction on nitrate contained in PM2.5, 2009~2018. Journal of Korean Society for Atmospheric Environment 36(2): 249-261 (in Korean). doi:10.5572/KOSAE.2020.36.2.249.
  37. Theobald, M. R., K. J. Milford, L. J. Hargreaves, L. J. Sheppard, E. Nemitz, and Y. S. Tang, 2001. Potential for ammonia recapture by farm woodlands: design and application of a new experimental facility. The Scientific World 1: 791-801. doi:10.1100/tsw.2001.338.
  38. Tsai, F. C., M. G. Apte, and J. M. Daisey, 2000. An exploratory analysis of the relationship between mortality and the chemical composition of airborne particulate matter. Inhalation Toxicology 12(2): 121-135. doi:10.1080/08958378.2000.11463204.
  39. Wing, S., R. A. Horton, S. W. Marshall, K. Thu, M. Tajik, L. Schinasi, and S. S. Schiffman, 2008. Air pollution and odor in communities near industrial swine operations. Environmental Health Perspectives 116(10): 1362-1368. doi:10.1289/ehp.11250.
  40. World Health Organization (WHO), 2016. Burden of disease from the joint effects of household and ambient air pollution for 2018.
  41. Yoon, B. G., J. B. Seo, Y. S. Kim, W . J. Choi, Y. S. Kim, and K. J. Oh, 2009. A study of the amount of fugitive dust generated from new harbor construction site and the prediction of effect using AERMOD. Korean Journal of Environmental Health Sciences 35(4): 304-314 (in Korean). doi:10.5668/JEHS.2009.35.4.304.
  42. Zou, B., F. B. Zhan, J. G. Wilson, and Y. Zeng, 2010. Performance of AERMOD at different time scales. Simulation Modelling Practice and Theory 18(5): 612-623. doi:10.1016/j.simpat.2010.01.005.