DOI QR코드

DOI QR Code

Optimization of Monochamus alternatus media and culture period for cordycepin production in Cordyceps militaris culture using solid-state fermentation

  • Ha, Si Young (Division of Environmental Forest Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jung, Ji Young (Division of Environmental Forest Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Yang, Jae-Kyung (Division of Environmental Forest Science, Institute of Agriculture and Life Science, Gyeongsang National University)
  • Received : 2021.07.05
  • Accepted : 2021.08.24
  • Published : 2021.09.30

Abstract

In this study, we investigated the effect of solid culture medium on the production of cordycepin in Cordyceps militaris. The regression equation was expressed as follows: Y1 = 755.3-58.6625X1+4.79432E-14X2-46.6625X3-5.66269E-14X1X2-0.025X1X3+1.62475E-14X2X3-160.6625X12+0.0125X22-206.9625X32, where, Y represents the value of cordycepin content (㎍/g), X1 corresponds to the weight of M. alternatus in solid culture medium (g/bottle), X2 to the water content of the solid culture medium (%), and X3 to the culture period (day). The solid culture medium was optimized using the response surface methodology, and the optimal medium composition was as follows: the weight of M. alternatus in solid culture medium and water content were 16.2% and 100.7% (20.14 mL water/20 g solid culture medium), respectively, with a culture period of 39 days. Under these conditions, the cordycepin content of the fruiting bodies reached 150.0 ㎍/g (actual value). The supplementation of M. alternatus in solid culture for improved cordycepin content of C. militaris seems to be a promising alternative to wild and solid cultivation.

Keywords

Acknowledgement

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. "2020253B10-2021-0001")' provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Hawley SA, Ross FA, Russell FM, Atrih A, Lamont DJ, Hardie DG. 2020. Mechanism of activation of AMPK by cordycepin. Cell Chem Biol 27(2): 214-222. https://doi.org/10.1016/j.chembiol.2020.01.004
  2. Khuntawee W, Amornloetwattana R, Vongsangnak W, Namdee K, Yata T, Karttunen M, Wong-ekkabut J. 2021. In silico and in vitro design of cordycepin encapsulation in liposomes for colon cancer treatment. RSC Adv 11(15): 8475-8484. https://doi.org/10.1039/D1RA00038A
  3. Kim BN, Kim JH, Ahn JY, Kim S, Cho BK, Kim YH, Min J. 2020. A short review of the pinewood nematode, Bursaphelenchus xylophilus. Toxicol Environ Health Sci 12(4): 297-304. https://doi.org/10.1007/s13530-020-00068-0
  4. Kim SY, Shrestha B, Sung GH, Han SK, Sung JM. 2018. Optimum conditions for artificial fruiting body formation of Cordyceps cardinalis. Mycobiology 38(2): 133-136. https://doi.org/10.4489/MYCO.2010.38.2.133
  5. Kosaka H, Ogura N. 1990. Rearing of the Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae) on artificial diets. Appl Entomol Zool 25(4): 532-534. https://doi.org/10.1303/aez.25.532
  6. Li X, Wang J, Zhang H, Xiao L, Lei Z, Kaul SC, Wadhwa R, Zhang Z. 2021. Low dose of fluoride in the culture medium of Cordyceps militaris promotes its growth and enhances bioactives with antioxidant and anticancer properties. J Fungi 7(5): 342. https://doi.org/10.3390/jof7050342
  7. Liu Y, Xiao K, Wang Z, Wang S, Xu F. 2021. Comparison of metabolism substances in Cordyceps sinensis and Cordyceps militaris cultivated with tussah pupa based on LC-MS. J Food Biochem 45(6): e13735.
  8. Lopez Rodriguez L, Burrola-Aguilar C. 2019. Parasite fungi of insects and other mushrooms: a functional food alternative. Agro productividad 12(5): 57-62.
  9. Park BT, Na KH, Jung EC, Park JW, Kim HH. 2009. Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Korean J Physiol Pharmacol 13(1): 49-54. https://doi.org/10.4196/kjpp.2009.13.1.49
  10. Park JP, Kim SW, Hwang HJ, Yun JW. 2001. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol 33(1): 76-81. https://doi.org/10.1046/j.1472-765X.2001.00950.x
  11. Quan X, Kwak BS, Lee JY, Park JH, Lee A, Kim TH, Park S. 2020. Cordyceps militaris induces immunogenic cell death and enhances antitumor immunogenic response in breast cancer. Evid Based Complement Alternat Med 9053274: 1-11.
  12. Raethong N, Wang H, Nielsen J, Vongsangnak W. 2020. Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Comput Struct Biotechnol J 18: 1-8. https://doi.org/10.1016/j.csbj.2019.11.003
  13. Su C, Ji Y, Liu S, Gao S, Cao S, Xu X, Zhou C, Liu, Y. 2020. Fluorescence-labeled abamectin nanopesticide for comprehensive control of pinewood nematode and Monochamus alternatus hope. ACS Sustain Chem Eng 8(44): 16555-16564. https://doi.org/10.1021/acssuschemeng.0c05771
  14. Wen TC, Li GR, Kang JC, Kang C, Hyde KD. 2014. Optimization of solid-state fermentation for fruiting body growth and cordycepin production by Cordyceps militaris. Chiang Mai J Sci 41(4): 858-872.
  15. Wosten HA. 2019. Filamentous fungi for the production of enzymes, chemicals and materials. Curr Opin Biotechnol 59: 65-70. https://doi.org/10.1016/j.copbio.2019.02.010
  16. Wu XF, Zhang M, Bhandari B. 2019. A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innov Food Sci Emerg Technol 54: 34-42. https://doi.org/10.1016/j.ifset.2019.03.003
  17. Xu L, Wang F, Zhang Z, Terry N. 2019. Optimization of polysaccharide production from Cordyceps militaris by solid-state fermentation on rice and its antioxidant activities. Foods 8(11): 590. https://doi.org/10.3390/foods8110590
  18. Yu XY, Zou Y, Zheng QW, Lu FX, Li DH, Guo LQ, Lin JF. 2021. Physicochemical, functional and structural properties of the major protein fractions extracted from Cordyceps militaris fruit body. Food Res Int 142: 110211. https://doi.org/10.1016/j.foodres.2021.110211
  19. Zhang H, Deng L, Zhang Z, Guan Y, Li B, Yang J, Fan H, Yang G, Chen X, Zhang J, Xin X, Vriesekoop F. 2020. Enhanced cordycepin production in caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), mutated by a multifunctional plasma mutagenesis system. Int J Med Mushrooms 22(12): 1147-1159. https://doi.org/10.1615/IntJMedMushrooms.2020037153
  20. Zhang J, Jian T, Zhang Y, Zhang G, Ling J. 2021. Dynamic content changes of cordycepin and adenosine and transcriptome in Cordyceps kyushuensis Kob at different fermentation stages. Bioprocess Biosyst Eng 44: 1-11.
  21. Zhao X, Zhang G, Li C, Ling J. 2019. Cordycepin and pentostatin biosynthesis gene identified through transcriptome and proteomics analysis of Cordyceps kyushuensis Kob. Microbiol Res 218: 12-21. https://doi.org/10.1016/j.micres.2018.09.005