DOI QR코드

DOI QR Code

Anti-inflammatory effects of Cudrania tricuspidata twig sawdust fermented with Ganoderma lucidum mycelium

영지버섯균 발효 꾸지뽕나무 가지 톱밥 추출물의 항염증 활성

  • Park, Se-Eun (Department of Food Science and Biotechnology, Gwangju University) ;
  • Kim, Myung Kon (Department of Food Science and Technology, Jeonbuk National University) ;
  • Kim, Seung (Department of Food Science and Biotechnology, Gwangju University)
  • 박세은 (광주대학교 식품생명공학과) ;
  • 김명곤 (전북대학교 식품공학과) ;
  • 김승 (광주대학교 식품생명공학과)
  • Received : 2021.08.30
  • Accepted : 2021.09.27
  • Published : 2021.09.30

Abstract

In this study, we evaluated the anti-inflammatory effect of extract from Cudrania tricuspidata twig sawdust fermented with Ganoderma lucidum mycelium. Fermented Cudrania tricuspidata twig sawdust extracted with 70% ethanol and elucidated the potential signaling pathway in lipopolysaccharide (LPS)-induced RAW264.7 cells. Fermented Cudrania tricuspidata twig sawdust inhibits LPS-stimulated nitric oxide (NO) production without affecting cell viability in a dose-dependent manner and production of LPS-induced pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and prostaglandin2 (PGE2). Fermented Cudrania tricuspidata twig sawdust also suppressed the expression of the pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 cells. Moreover, Fermented Cudrania tricuspidata twig sawdust significantly attenuated LPS-induced IkappaB (IκB) degradation and suppressed nuclear factor kappa B (NF-κB) nuclear translocation. These results suggest that fermented Cudrania tricuspidata twig sawdust may have great potential for the development of anti-inflammatory agent.

염증은 외부 자극으로부터 보호하는 중요한 면역반응이다(Jeong et al., 2012). 그러나 NO 및 inflammatory cytokine과 같은 염증 매개 인자의 과도한 생성은 비정상적인 염증 반응을 초래할 수 있다(Paradise et al., 2010). 염증 매개 인자의 생성과 염증 신호 전달을 조절하는 중요한 역할을 하는 대식세포는 LPS 자극에 의해 NF-κB가 활성화 되어 inflammatory cytokine 등의 염증 매개 인자들이 분비가 증가되며 염증 반응을 심화시킨다(Lee et al., 2012). 본 연구에서는 영지버섯균 발효 꾸지뽕나무 가지 톱밥 추출물을 이용하여 LPS로 염증을 유도한 Raw264.7세포에서 염증 관련 인자들의 생성 및 발현에 미치는 영향을 분석하여 항염증 효과를 확인하였다. NO는 염증에서 중요한 역할을 하며 대식세포의 염증 반응 조절 평가시 대표적인 지표로 사용되며 iNOS에 의해 생성이 유도되며 PGE2는 염증 매개 인자로 inflammatory cytokine 생성에 관여하며 COX-2에 의해 생성이 유도된다(Paradise et al., 2010; Posadas et al., 2000). 발효추출물이 RAW264.7세포에서 세포독성 없이 NO의 생성과 PGE2의 생성을 감소시켰으며 이 결과는 발효 추출물 처리에 의해 iNOS와 COX-2의 발현이 감소한 것과 일치하였다. 또한 염증 반응을 조절하는 대표적인 inflammatory cytokine으로 알려진 IL-1β, TNF-α의 생성이 감소되었다. 따라서 발효추출물은 NO, PGE2, inflammatory cytokines 생성을 감소시켜 항염증 효과를 나타낸다고 볼 수 있다. NF-κB는 iNOS, COX-2 및 inflammatory cytokine의 발현을 조절하는 전사인자로 IκB와의 결합에 의해 NF-κB의 핵 내 이동이 억제되며 불활성화상태로 존재한다. LPS 자극에 의해 IκB가 인산화 및 분해되면 NF-κB가 활성화되어 핵 내로 이동하여 염증성 매개인자들의 발현을 유도하고, 염증성 질환 뿐만 아니라 다양한 질환을 유발시키는 것으로 알려져 있다 (Kawai and Akira, 2006; Ghosh and Ksarin, 2002). 본 연구에서는 LPS에 의해 자극된 RAW264.7 세포에서 IκB의 분해 및 NF-κB의 전이가 발효추출물에 의해 감소됨을 확인하였으며 발효추출물에 의한 iNOS, COX-2 및 inflammatory cytokine 감소는 NFκB 활성화 감소에 의해 조절되는 것으로 사료된다. 이러한 결과들을 통해서 발효추출물이 NF-kB 활성화 억제를 통해 염증 매개 인자들의 생성 및 발현을 감소시킴으로서 염증 반응 억제 효과를 나타냄을 확인하여, 염증 관련 질환에 대해 예방 및 개선을 위한 항염증 기능성 소재로 사용될 수 있음을 시사한다.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) 연구개발사업(과제번호: 2021381D10-2123-BD02)의 지원에 의하여 이루어진 것입니다.

References

  1. Chen JH, Jiang RL. 1980. A pharmacological study of the Chinese drug lingzhi (ganoderma). Yao Hsueh Hsueh Pao-Acta Pharmaceutica Sinica 15: 234-244 (in Chinese).
  2. Cho HJ, Seon MR, Lee YM, Kim J, Kim J-K, Kim SG, Park JHY. 2008. 3,3'-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J Nutr 138: 7-23.
  3. Choi SR, You DH, Kim JY, Park CB, Kim DH, Ryu J. 2009. Antioxidant activity of methanol extracts from Cudrania tricuspidata Bureau according to harvesting parts and time. Korean J Medicinal Crop Sci 17: 115-120.
  4. Furusawa E, Chou SC, Furusawa S, Hirazumi A, Dang Y. 1992. Antitumour activity of Ganoderma lucidum, an edible mushroom, on Intraperitoneally implanted Lewis lung carcinoma in synergetic mice. Phytother Res 6: 300-304. https://doi.org/10.1002/ptr.2650060604
  5. Ghosh S, Ksarin M. 2002. Missing pieces in the NF-κB puzzle. Cell 109: S81-S96. https://doi.org/10.1016/S0092-8674(02)00703-1
  6. Guo S, Qiu P, Xu G, Wu X, Dong P, Yang G, Zheng J, McClements DJ, Xiao H. 2012. Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide-stimulated RAW264.7 cells. J Agr Food Chem 60: 2157-2164. https://doi.org/10.1021/jf300129t
  7. Jin, KS, Lee JY, Kwon HJ, Kim BW. 2014 Antioxidative and anti-inflammatory activities of Ardisia arborescens ethanol extract. Korean J Life Sci 24: 713-720. https://doi.org/10.5352/JLS.2014.24.7.713
  8. Kang DH, Kim JW, Youn KS. 2011. Antioxidant activities of extracts from fermented mulberry (Cudrania tricuspidata) fruit, and inhibitory actions on elastase and tyrosinase. Korean J Food Preserv 18; 236-243. https://doi.org/10.11002/kjfp.2011.18.2.236
  9. Kang YJ, Wingerd BA, Arakawa T, Smith W. 2006. Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. J Immunol 177: 8111-8122. https://doi.org/10.4049/jimmunol.177.11.8111
  10. Kawai T, Akira S. 2006. TLR signaling. Cell Death Differ. 13: 816-825. https://doi.org/10.1038/sj.cdd.4401850
  11. Kim JW, Kim C. 2005. Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-kappa B. Biochem Pharmacol 70: 1352-1360. https://doi.org/10.1016/j.bcp.2005.08.006
  12. Kim JY, Chung JH, Hwang I, Kwan YS, Chai JK, Lee KH, Han TH, Moon JH. 2009. Quantification of quercetin and kaempferol contents in different parts of Cudrania tricuspidata and their processed foods. Kor J Hort Sci Technol 27: 489-496.
  13. Kim OK, Ho JH, Nam DE, Jun WJ, Hwang KT, Kang JE, Chae OS, Lee JM. 2012. Hepatoprotective effect of Curdrania tricuspidata extracts against oxidative damage. J Korean Soc Food Sci Nutr 41: 7-13. https://doi.org/10.3746/jkfn.2012.41.1.007
  14. Kim YS, Joung MY, Ryu BS, Park PJ, Jeong JH. 2016. Anti-Inflammatory Activities of Extracts from Fermented Taraxacum platycarpum D. Leaves Using Hericium erinaceum Mycelia. J Korean Soc Food Sci Nutr 45: 20-26. https://doi.org/10.3746/jkfn.2016.45.1.020
  15. Kim YS, Shin WB, Dong X, Kim EK, Nawarathna WPAS, Kim HJ, Park PJ. 2017. Anti-inflammatory effect of the extract from fermented Asterina pectinifera with Cordyceps militaris mycelia in LPS-induced RAW264.7 macrophages. Food Sci Biotechnol 26, 1633-1640. https://doi.org/10.1007/s10068-017-0233-9
  16. Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC. 2012. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264.7 macrophage cells. J Enzyme Inhib Med Chem 27, 875-879. https://doi.org/10.3109/14756366.2011.625025
  17. Joo HY, Lim KT. 2009. Protective effect of glycoproteinisolated from Cudrania tricuspidata on liver in CCl4-treated A/J mice. Korean J Food Sci Technol 41: 93-99.
  18. Lawrence T, Willoughby DA, Gilroy DW. 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Rev Immunol 2: 787-795. https://doi.org/10.1038/nri915
  19. Lee GH. 2014. A study on the effect of biologically active in skin on jujube extract and extract of fermented jujube. Ph. D. Thesis. DaejeonUniversity. Daejeon. Korea.
  20. Lee JW, Bae CJ, Choi YJ, Kim SI, Kim NH, Lee HJ, Kim SS, Kwon YS, Chun W. 2012. 3,4,5-Trihydroxycinnamic acid inhibits LPS-induced iNOS expression by suppressing NF-κB activation in BV2 microglial cells. Korean J Physiol Pharmacol.16: 107-112. https://doi.org/10.4196/kjpp.2012.16.2.107
  21. Medicherla K, Sahu BD, Kuncha M, Kumar JM, Sudhakar G, Sistla R. 2015. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting proinflammatory cytokines and NF-κB signaling. Food Funct 6: 2984-2995. https://doi.org/10.1039/C5FO00405E
  22. Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW, Haines GK. Radosevich JA. 2010. Nitric oxide: Perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci 11: 2715-2745. https://doi.org/10.3390/ijms11072715
  23. Park JH, Ahn KJ, Lee SR. 2020. Anti-inflammatory Effects of Heat-treated Starfish Extract in Lipopolysaccharide stimulated RAW 264.7 Cells. J Life Sci 30: 634-639. https://doi.org/10.5352/JLS.2020.30.7.634
  24. Park SM, Byun SH, Kim YW, Cho IJ, Kim SC. 2012. Inhibitory effect of Mori Folium ethanol extract on proinflammator mediator in lipopolysaccharide-activated RAW264.7cells. Kor J Herbology 27: 31-38.
  25. Peng XX, Zhang SH, Wang XL, Ye TJ, Li H, Yan XF, Wei L, Wu ZP, Hu J, Zou CP, Wang YH, Hu XD. 2015. Panax Notoginseng flower saponins (PNFS) inhibit LPS-stimulated NO overproduction and iNOS gene overexpression via the suppression of TLR4-mediated MAPK/NF-kappa B signaling pathways in RAW264.7 macrophages. Chin Med 10:152015.
  26. Posadas I, Terencio MC, Guillen I, Ferrandiz ML, Coloma J, Paya M, Alcaraz MJ. 2000. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch Pharmacol 361: 98-106. https://doi.org/10.1007/s002109900150
  27. Ryu JH, Ahn H, Kim JY, Kim YK. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res 17: 485-489. https://doi.org/10.1002/ptr.1180
  28. Skidgel RA, Gao XP, BrovkovychV, Rahman,A, Jho D, Predescu S, Malik AB. 2002. Nitric oxide stimulates macrophage inflammatory protein-2 expression in sepsis. J Immunol 169, 2093-2101. https://doi.org/10.4049/jimmunol.169.4.2093
  29. Seo MJ, Kang BW, Kim MJ, Lee HH, Seo KI, Kim KH, Jeong YK. 2014. The effect of cordycepin on the production of proinflammatory cytokines in mouse peritoneal macrophages. Korean J Food Sci. Technol 46: 68-72. https://doi.org/10.9721/KJFST.2014.46.1.68
  30. Shiao MS. Natural products of the medicinal fungus Ganoderma lucidum: Occurrence, biological activities, and pharmacological functions. Chem Rec 3: 172-180. https://doi.org/10.1002/tcr.10058
  31. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci US A 91: 2046-2050. https://doi.org/10.1073/pnas.91.6.2046
  32. Wasser SP, Weis AL. 1999. Medicinal properties of substances occurring in higher basidiomycete mushrooms: current perspectives (Riview). Int J Med Mushrooms 1: 31-62. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30