Acknowledgement
The authors would like to thank the anonymous referee for his/her valuable comments and suggestions. The first author is partially supported by MATRICS research grant from DST(SERB)(MTR/2017/000033). Also, this work has been sponsored by Dr. D. S. Kothari Postdoctoral Fellowship (Award letter No. F.4-2/2006(BSR)/MA/18-19/0014) awarded to the second author under the University Grants Commission, Government of India, New Delhi.
References
- I. Z. Abdullaev, n-Lie derivations on von Neumann algebras, Uzbek. Mat. Zh. No. 5-6 (1992), 3-9.
- M. Ashraf and A. Jabeen, Characterizations of additive ξ-Lie derivations on unital algebras, Ukrainian Math. J. 73 (2021), no. 4, 455-466. https://doi.org/10.37863/umzh.v73i4.838
- M. Bresar and C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), no. 4, 695-708. https://doi.org/10.4153/CJM-1993-039-x
- P. Ji and W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl. 435 (2011), no. 5, 1137-1146. https://doi.org/10.1016/j.laa.2011.02.048
- P. Ji, W. Qi, and X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear Algebra 61 (2013), no. 3, 417-428. https://doi.org/10.1080/03081087.2012.689982
- R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, 100, Academic Press, Inc., New York, 1983.
- L. Liu, Lie triple derivations on factor von Neumann algebras, Bull. Korean Math. Soc. 52 (2015), no. 2, 581-591. https://doi.org/10.4134/BKMS.2015.52.2.581
- L. Liu, Lie triple derivations on von Neumann algebras, Chin. Ann. Math. Ser. B 39 (2018), no. 5, 817-828. https://doi.org/10.1007/s11401-018-0098-0
- F. Lu and W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl. 432 (2010), no. 1, 89-99. https://doi.org/10.1016/j.laa.2009.07.026
- C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-735. http://projecteuclid.org/euclid.pjm/1102969919 https://doi.org/10.2140/pjm.1971.38.717
- X. Qi, Characterization of (generalized) Lie derivations on J-subspace lattice algebras by local action, Aequationes Math. 87 (2014), no. 1-2, 53-69. https://doi.org/10.1007/s00010-012-0177-3
- X. Qi, Characterizing Lie n-derivations for reflexive algebras, Linear Multilinear Algebra 63 (2015), no. 8, 1693-1706. https://doi.org/10.1080/03081087.2014.968519
- X. Qi and J. Hou, Characterization of Lie derivations on von Neumann algebras, Linear Algebra Appl. 438 (2013), no. 1, 533-548. https://doi.org/10.1016/j.laa.2012.08.019
- X. Qi and J. Ji, Characterizing derivations on von Neumann algebras by local actions, J. Funct. Spaces Appl. 2013 (2013), Art. ID 407427, 11 p. https://doi.org/10.1155/2013/407427
- Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl. 458 (2014), 512-525. https://doi.org/10.1016/j.laa.2014.06.029
- Y. Wang and Y. Wang, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl. 438 (2013), no. 5, 2599-2616. https://doi.org/10.1016/j.laa.2012.10.052