DOI QR코드

DOI QR Code

CHARACTERIZATION OF LIE TYPE DERIVATION ON VON NEUMANN ALGEBRA WITH LOCAL ACTIONS

  • Ashraf, Mohammad (Department of mathematics Aligarh Muslim University) ;
  • Jabeen, Aisha (Department of Applied Sciences & Humanities Jamia Millia Islamia)
  • Received : 2020.10.07
  • Accepted : 2021.04.06
  • Published : 2021.09.30

Abstract

Let 𝓐 be a von Neumann algebra with no central summands of type I1. In this article, we study Lie n-derivation on von Neumann algebra and prove that every additive Lie n-derivation on a von Neumann algebra has standard form at zero product as well as at projection product.

Keywords

Acknowledgement

The authors would like to thank the anonymous referee for his/her valuable comments and suggestions. The first author is partially supported by MATRICS research grant from DST(SERB)(MTR/2017/000033). Also, this work has been sponsored by Dr. D. S. Kothari Postdoctoral Fellowship (Award letter No. F.4-2/2006(BSR)/MA/18-19/0014) awarded to the second author under the University Grants Commission, Government of India, New Delhi.

References

  1. I. Z. Abdullaev, n-Lie derivations on von Neumann algebras, Uzbek. Mat. Zh. No. 5-6 (1992), 3-9.
  2. M. Ashraf and A. Jabeen, Characterizations of additive ξ-Lie derivations on unital algebras, Ukrainian Math. J. 73 (2021), no. 4, 455-466. https://doi.org/10.37863/umzh.v73i4.838
  3. M. Bresar and C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), no. 4, 695-708. https://doi.org/10.4153/CJM-1993-039-x
  4. P. Ji and W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl. 435 (2011), no. 5, 1137-1146. https://doi.org/10.1016/j.laa.2011.02.048
  5. P. Ji, W. Qi, and X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear Algebra 61 (2013), no. 3, 417-428. https://doi.org/10.1080/03081087.2012.689982
  6. R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, 100, Academic Press, Inc., New York, 1983.
  7. L. Liu, Lie triple derivations on factor von Neumann algebras, Bull. Korean Math. Soc. 52 (2015), no. 2, 581-591. https://doi.org/10.4134/BKMS.2015.52.2.581
  8. L. Liu, Lie triple derivations on von Neumann algebras, Chin. Ann. Math. Ser. B 39 (2018), no. 5, 817-828. https://doi.org/10.1007/s11401-018-0098-0
  9. F. Lu and W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl. 432 (2010), no. 1, 89-99. https://doi.org/10.1016/j.laa.2009.07.026
  10. C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-735. http://projecteuclid.org/euclid.pjm/1102969919 https://doi.org/10.2140/pjm.1971.38.717
  11. X. Qi, Characterization of (generalized) Lie derivations on J-subspace lattice algebras by local action, Aequationes Math. 87 (2014), no. 1-2, 53-69. https://doi.org/10.1007/s00010-012-0177-3
  12. X. Qi, Characterizing Lie n-derivations for reflexive algebras, Linear Multilinear Algebra 63 (2015), no. 8, 1693-1706. https://doi.org/10.1080/03081087.2014.968519
  13. X. Qi and J. Hou, Characterization of Lie derivations on von Neumann algebras, Linear Algebra Appl. 438 (2013), no. 1, 533-548. https://doi.org/10.1016/j.laa.2012.08.019
  14. X. Qi and J. Ji, Characterizing derivations on von Neumann algebras by local actions, J. Funct. Spaces Appl. 2013 (2013), Art. ID 407427, 11 p. https://doi.org/10.1155/2013/407427
  15. Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl. 458 (2014), 512-525. https://doi.org/10.1016/j.laa.2014.06.029
  16. Y. Wang and Y. Wang, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl. 438 (2013), no. 5, 2599-2616. https://doi.org/10.1016/j.laa.2012.10.052