Acknowledgement
This work was financially supported by NSFC 11501274 and LNECFC L2015203.
References
- Y. Chen and W. Liu, Finite-dimensional odd contact superalgebras over a field of prime characteristic, J. Lie Theory 21 (2011), no. 3, 729-754.
- R. Farnsteiner, Extension functors of modular Lie algebras, Math. Ann. 288 (1990), no. 4, 713-730. https://doi.org/10.1007/BF01444560
- R. Farnsteiner and H. Strade, Shapiro's lemma and its consequences in the cohomology theory of modular Lie algebras, Math. Z. 206 (1991), no. 1, 153-168. https://doi.org/10.1007/BF02571333
- J. Fu, Q. Zhang, and C. Jiang, The Cartan-type modular Lie superalgebra KO, Comm. Algebra 34 (2006), no. 1, 107-128. https://doi.org/10.1080/00927870500346065
- R. R. Holmes, Simple restricted modules for the restricted contact Lie algebras, Proc. Amer. Math. Soc. 116 (1992), no. 2, 329-337. https://doi.org/10.2307/2159737
- N. H. Hu, The graded modules for the graded contact Cartan algebras, Comm. Algebra 22 (1994), no. 11, 4475-4497. https://doi.org/10.1080/00927879408825082
- Q. Mu, L. Ren, and Y. Zhang, Ad-nilpotent elements, isomorphisms, and the Weisfeiler filtration of infinite-dimensional modular odd contact superalgebras, Comm. Algebra 39 (2011), no. 10, 3581-3593. https://doi.org/10.1080/00927872.2010.502162
- G. Y. Shen, Graded modules of graded Lie algebras of Cartan type. I. Mixed products of modules, Sci. Sinica Ser. A 29 (1986), no. 6, 570-581.
- G. Y. Shen, Graded modules of graded Lie algebras of Cartan type. II. Positive and negative graded modules, Sci. Sinica Ser. A 29 (1986), no. 10, 1009-1019.
- G. Y. Shen, Graded modules of graded Lie algebras of Cartan type. III. Irreducible modules, Chinese Ann. Math. Ser. B 9 (1988), no. 4, 404-417.
- B. Shu and Y.-F. Yao, Character formulas for restricted simple modules of the special superalgebras, Math. Nachr. 285 (2012), no. 8-9, 1107-1116. https://doi.org/10.1002/mana.201000064
- B. Shu and C. Zhang, Representations of the restricted Cartan type Lie superalgebra W(m, n, 1), Algebr. Represent. Theory 14 (2011), no. 3, 463-481. https://doi.org/10.1007/s10468-009-9198-6
- H. Strade and R. Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, 116, Marcel Dekker, Inc., New York, 1988.
- Y. Su and R. B. Zhang, Generalised Verma modules for the orthosympletic Lie superalgebra ospk|2, J. Algebra 357 (2012), 94-115. https://doi.org/10.1016/j.jalgebra.2012.01.026
- Y.-F. Yao and B. Shu, Restricted representations of Lie superalgebras of Hamiltonian type, Algebr. Represent. Theory 16 (2013), no. 3, 615-632. https://doi.org/10.1007/s10468-011-9322-2
- J. Yuan, W. Liu, and W. Bai, Associative forms and second cohomologies of Lie superalgebras HO and KO, J. Lie Theory 23 (2013), no. 1, 203-215.
- Y. Z. Zhang and W. D. Liu, Modular Lie Superalgebras, Science Press, Beijing, 2004.
- K. Zheng and Y. Zhang, Some properties of generalized reduced Verma modules over Z-graded modular Lie superalgebras, Czechoslovak Math. J. 67(142) (2017), no. 3, 699-713. https://doi.org/10.21136/CMJ.2017.0050-16