DOI QR코드

DOI QR Code

Identification of strA-strB Genes in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 2 Strains Isolated in Korea

  • Lee, Young Sun (Department of Biology, Sunchon National University) ;
  • Kim, Gyoung Hee (Department of Plant Medicine, Sunchon National University) ;
  • Koh, Young Jin (Department of Plant Medicine, Sunchon National University) ;
  • Jung, Jae Sung (Department of Biology, Sunchon National University)
  • Received : 2021.05.17
  • Accepted : 2021.08.25
  • Published : 2021.10.01

Abstract

Bacterial canker is a devastating disease of kiwifruit caused by the bacterium Pseudomonas syringe pv. actinidiae. Canker disease of kiwifruit in Korea has been controlled using streptomycin for more than two decades. Four streptomycin-resistant strains, belonging to biovar 2, which are found only in Korea, were collected between 2013 and 2014 from different orchards located in Jeju, Korea. The genetic background for streptomycin resistance among P. syringe pv. actinidiae strains were determined by examining the presence of strA-strB or aadA, which are genes frequently found in streptomycin-resistant bacteria, and a point mutation at codon 43 in the rpsL gene. All four streptomycin-resistant strains of P. syringe pv. actinidiae investigated in this study contained strA-strB as a resistant determinant. The presence of the aadA gene and a mutation in codon 43 of the rpsL gene was not identified.

Keywords

Acknowledgement

This work was supported by a Research promotion program of SCNU.

References

  1. Balestra, G. M., Taratufolo, M. C., Vinatzer, B. A. and Mazzaglia, A. 2013. A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin. Plant Dis. 97:472-478. https://doi.org/10.1094/PDIS-06-12-0590-RE
  2. Cameron, A. and Sarojini, V. 2014. Pseudomonas syringae pv. actinidiae: chemical control, resistance mechanisms and possible alternatives. Plant Pathol. 63:1-11. https://doi.org/10.1111/ppa.12066
  3. Chapman, J. R., Taylor, R. K., Weir, B. S., Romberg, M. K., Vanneste, J. L., Luck, J. and Alexander, B. J. R. 2012. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology 102:1034-1044. https://doi.org/10.1094/PHYTO-03-12-0064-R
  4. Chiou, C.-S. and Jones, A. L. 1995. Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology 85:324-328. https://doi.org/10.1094/Phyto-85-324
  5. Clark, N. C., Olsvik, O., Swenson, J. M., Spiegel, C. A. and Tenover, F. C. 1999. Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis. Antimicrob. Agents Chemother. 43:157-160. https://doi.org/10.1128/aac.43.1.157
  6. Ferrante, P. and Scortichini, M. 2010. Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on kiwifruit (Actinidia chinensis) in central Italy. Plant Pathol. 59:954-962. https://doi.org/10.1111/j.1365-3059.2010.02304.x
  7. Forster, H., McGhee, G. C., Sundin, G. W. and Adaskaveg, J. E. 2015. Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology 105:302-1310.
  8. Han, H. S., Nam, H. Y., Koh, Y. J., Hur, J.-S. and Jung, J. S. 2003. Molecular bases of high-level streptomycin resistance in Pseudomonas marginalis and Pseudomonas syringae pv. actinidiae. J. Microbiol. 41:16-21.
  9. Koh, Y. J., Cha, B. J., Chung, H. J. and Lee, D. H. 1994. Outbreak and spread of bacterial canker in kiwifruit. Korean J. Plant Pathol. 10:68-72.
  10. Koh, Y. J., Kim, G. H. and Jung, J. S. 2017. A proposed manual for the efficient management of kiwifruit bacterial canker in Korea. Res. Plant Dis. 23:1-18. https://doi.org/10.5423/RPD.2017.23.1.1
  11. Koh, Y. J., Kim, G. H., Jung, J. S., Lee, Y. S. and Hur, J. S. 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hortic. Sci. 38:275-282. https://doi.org/10.1080/01140671.2010.512624
  12. Lee, J. H., Kim, J. H., Kim, K. H., Jung, J. S., Hur, J.-S. and Koh, Y. J. 2005. Comparative analysis of Korean and Japanese strains of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit. Plant Pathol. J. 21:119-126. https://doi.org/10.5423/PPJ.2005.21.2.119
  13. Lee, Y. S., Kim, J., Kim, G. H., Choi, E. D., Koh, Y. J. and Jung, J. S. 2017. Biovars of Pseudomonas syringae pv. actinidiae strains, the causal agent of bacterial canker of kiwifruit, isolated in Korea. Res. Plant Dis. 23:35-41. https://doi.org/10.5423/RPD.2017.23.1.35
  14. Lim, C. S., Lee, Y. S., Kahng, H.-Y., Ahn, S. and Jung, J. S. 2018. Resistance genes in high-level streptomycin resistant Escherichia coli isolated from shellfish. Korean J. Microbiol. 54:228-236. https://doi.org/10.7845/KJM.2018.8021
  15. Lyu, Q., Bai, K., Kan, Y., Jiang, N., Thapa, S. P., Coaker, G., Li, J. and Luo, L. 2019. Variation in streptomycin resistance mechanisms in Clavibacter michiganensis. Phytopathology 109:1849-1858. https://doi.org/10.1094/PHYTO-05-19-0152-R
  16. Mazzaglia, A., Studholme, D. J., Taratufolo, M. C., Cai, R., Almeida, N. F., Goodman, T., Guttman, D. S., Vinatzer, B. A. and Balestra, G. M. 2012. Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS ONE 7: e36518. https://doi.org/10.1371/journal.pone.0036518
  17. Mazzaglia, A., Turco, S., Taratufolo, M. C., Tati, M., Jundi Rahi, Y., Gallipoli, L. and Balestra, G. M. 2021. Improved MLVA typing reveals a highly articulated structure in Pseudomonas syringae pv. actinidiae populations. Physiol. Mol. Plant Pathol. 114:101636. https://doi.org/10.1016/j.pmpp.2021.101636
  18. McCann, H. C., Li, L., Liu, Y., Li, D., Pan, H., Zhong, C., Rikkerink, E. H. A., Templeton, M. D., Straub, C., Colombi, E., Rainey, P. B. and Huang, H. 2017. Origin and evolution of the kiwifruit canker pandemic. Genome Biol. Evol. 9:932-944. https://doi.org/10.1093/gbe/evx055
  19. McGhee, G. C., Guasco, J., Bellomo, L. M., Blumer-Schuette, S. E., Shane, W. W., Irish-Brown, A. and Sundin, G. W. 2011. Genetic analysis of streptomycin-resistant (SmR) strains of Erwinia amylovora suggests that determination of two genotypes is responsible for the current distribution of SmR E. amylovora in Michigan. Phytopathology 101:182-191. https://doi.org/10.1094/PHYTO-04-10-0127
  20. Nischwitz, C. and Dhiman, C. 2013. Streptomycin resistance of Erwinia amylovora isolated from apple (Malus domesticus) in Utah. Plant Health Prog. https://doi.org/10.1094/PHP2013-1025-01-RS.
  21. Palmer, E. L., Teviotdale, B. L. and Jones, A. L. 1997. A relative of the broad-host range plasmid RSF1010 detected in Erwinia amylovora. Appl. Environ. Microbiol. 63:4604-4607. https://doi.org/10.1128/aem.63.11.4604-4607.1997
  22. Petrova, M. A., Gorlenko, Z. M., Soina, V. S. and Mindlin, S. Z. 2008. Association of the strA-strB genes with plasmids and transposons in the present-day bacteria and in bacterial strains from permafrost. Russ. J. Genet. 44:1116-1120. https://doi.org/10.1134/S1022795408090160
  23. Ponce de Leon-Door, A., Romo Chacon, A. and Acosta Muniz, C. 2013. Detection of streptomycin resistance in Erwinia amylovora strains isolated from apple orchards in Chihuahua, Mexico. Eur. J. Plant Pathol. 137:223-229. https://doi.org/10.1007/s10658-013-0241-4
  24. Russo, N. L., Burr, T. J., Breth, D. I. and Aldwinckle, H. S. 2008. Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant Dis. 92:714-718. https://doi.org/10.1094/PDIS-92-5-0714
  25. Sawada, H., Kondo, K. and Nakaune, R. 2016. Novel biovar (biovar 6) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia deliciosa) in Japan. Jpn. J. Phytopathol. 82:101-115. https://doi.org/10.3186/jjphytopath.82.101
  26. Sawada, H., Miyoshi, T. and Ide, Y. 2014. Novel MLSA group (Psa5) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia chinensis) in Japan. Jpn. J. Phytopathol. 80:171-184. https://doi.org/10.3186/jjphytopath.80.171
  27. ScoRtichini, M. 1994. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathol. 43:1035-1038. https://doi.org/10.1111/j.1365-3059.1994.tb01654.x
  28. Sundin, G. W. and Bender, C. L. 1996. Dissemination of the strAstrB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol. Ecol. 5:133-143. https://doi.org/10.1111/j.1365-294X.1996.tb00299.x
  29. Sundin, G. W. and Wang, N. 2018. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56:161-180. https://doi.org/10.1146/annurev-phyto-080417-045946
  30. Takikawa, Y., Serizawa, S., Ichikawa, T., Tsuyumu, S. and Goto, M. 1989. Pseudomonas syringae pv. actinidiae sp. nov., the causal bacterium of canker in kiwifruit in Japan. Ann. Phytopathol. Soc. Jpn. 55:437-444. https://doi.org/10.3186/jjphytopath.55.437
  31. Tancos, K. A., Villani, S., Kuehne, S., Borejsza-Wyscocka, E., Breth, D., Carol, J., Aldwinckle, H. S. and Cox, K. D. 2016. Prevalence of streptomycin-resistant Erwinia amylovora in New York apple orchards. Plant Dis. 100:802-809. https://doi.org/10.1094/PDIS-09-15-0960-RE
  32. Vanneste, J. L. 2017. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu. Rev. Phytopathol. 55:377-399. https://doi.org/10.1146/annurev-phyto-080516-035530
  33. van Overbeek, L. S., Wellington, E. M. H., Egan, S., Smalla, K., Heuer, H., Collard, J.-M., Guillaume, G., Karagouni, A. D., Nikolakopoulou, T. L. and van Elsas, J. D. 2002. Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol. Ecol. 42:277-288. https://doi.org/10.1111/j.1574-6941.2002.tb01018.x
  34. Xu, Y., Luo, Q.-Q. and Zhou, M.-G. 2013. Identification and characterization of integron-mediated antibiotic resistance in the phytopathogen Xanthomonas oryzae pv. oryzae. PLoS ONE 8:e55962. https://doi.org/10.1371/journal.pone.0055962