
International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

http://dx.doi.org/10.7236/IJASC.2021.10.3.89

Automatic UML Design Extraction with Software Visualization

based on Reverse Engineering

Se Jun Jung1, Janghwan Kim2, Won Young Lee3,
Bo Kyung Park4, Hyun Seung Son5, R. Young Chul Kim6

1,2M.S, Software Engineering Laboratory, Department of Software and Communication

Engineering, Hongik University, Korea
3M.S, Defense Korea Agency for Technology and Quality

4Assistant Professor, Dept. of Computer Education, ChinJu National University of Education,
5Assistant Professor, Dept. of Computer Engineering, Mokpo National University

6Professor, S.E Laboratory, Dept. of Software and Communication Engineering, Hongik University,
E-mail : {1bvcx79, 2janghwan, 3leewy, 6bob}@selab.ac.kr, 4parkse@cue.ac.kr, 5hson@mokpo.ac.kr

Abstract

In various areas of the 4th industry, a big issue is software quality enhancement for stability and reliability

of the smart software systems. After revising software promotion law at 2020, we must clearly define

requirements and separate design parts and implementation parts of an all public software development

contracts. In this study, we need to validate whether the final implementation of software is followed by the

original design or not. To do this, we consider the design restoration through software visualization based on

reverse engineering. Therefore we propose an UML design extraction and visualization method based on

reverse engineering. Based on this, we may validate whether it is implemented according to the original design,

and how much visualizes and includes the code the internal complexity for improvement of software quality.

Keywords: UML, OOP, Reverse engineering, Software visualization

1. Introduction

 As the knowledge-information society continues, the fields in which digital information is used in various

ways are increasing. As software that uses digital information appears in various fields, such as robots, artificial

intelligence, and the Internet of Things, the scale of software grows and becomes more complex, technology is

needed to achieve sophistication of software quality. In addition, since software programs require continuous

development and patching, a maintenance system that manages the implemented software for high quality is

important for complex software. However, due to invisibility, which is a characteristic of software, it is difficult

to measure the complexity of software and to reflect requirements, making it difficult to maintain software [1].

Moreover, in IT ventures or small and medium-sized enterprises, the lack of a maintenance system due to frequent

developer turnover, frequent changes in requirements, and lack of design documents is a big problem [2]. Those

complex parts of the software that are not discovered due to the invisibility of the software can potentially cause

bigger problems and additional costs for the company.

To improve these problems, this paper proposes the ways to improve the software quality by recovering the

IJASC 21-3-12

Manuscript Received: July. 15, 2021 / Revised: July. 20, 2021 / Accepted: July. 22, 2021

Corresponding Author: bob@selab.hongik.ac.kr

Tel: +82-44-860-2477, Fax: +xx-xx-xxx-xxxx

Professor, Software Engineering Laboratory, Department of Software and Communication Engineering, Hongik University, Korea

90 International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

design document through the software implemented based on the design to improve and verify the completeness

of the design. In the design phase of the software development lifecycle, errors can be identified, corrected, and

reduced at a lower cost than the implementation phase. In that case, verification work can be performed in

advance through the method suggested by the software engineer, and errors can be identified and corrected in

early stage with the verification result. Then, the company can expect to reduce the cost for the maintenance of

the software. This paper is organized in the following order. In Chapter 2, reverse engineering and software

visualization methods are mentioned as related studies, and in Chapter 3, the visualization process for UML

design restoration and verification based on reverse engineering is introduced. Chapter 4 shows the design

restoration of the online shopping mall data system as a case study. Section 5 ends this paper with a conclusion.

2. Related Works

2.1 Software Architecture Visualization and Software Process Visualization

Research on visualization of the software development process through reverse engineering is ongoing. J.

Chikofsky researched the forward engineering, reverse engineering, and maintenance of the SW process, which

is the core of SW reverse engineering and Tool-Chain [3]. Based on these, Software Reverse Engineering is the

operation of analyzing developed software to recover its product such as higher-level documents or design

drawings from lower-level products. And the J. Park researched of Tool-Chain, a tool for source code analysis,

proposed a Matrix to find the Bad Smell of the code and to visualization [4]. And more, the data structure for

extracting the design drawing use-case from the source code or tracking object information has been researched

[5]. These studies show advantages in terms of maintenance because information about the software development

process can be analyzed at the design level and the overall structure can be seen easily.

 Figure 1. Software Process Visualization

In software development, the invisibility of software is always a problem throughout the development process.

This is because these characteristics make it difficult to quickly identify various problems that occur throughout

the software development process. So There have been studies to Software Process Visualization. B. Park

researched about combines Tool-Chain and process visualization [6]. The software development process can be

efficiently managed through software visualization techniques, and the quality of software development can be

improved by understanding the entire process. This allows for early detection of software development problems

by ensuring transparency in the software development process. In addition, this can reduce the maintenance cost,

Automatic UML Design Extraction with Software Visualization based on Reverse Engineering 91

thereby reducing the economic burden of the company.

3. UML Designs Extraction

3.1 The Previous Tool-Chain for Software Architecture Visualization

Figure 2. Previous Tool-chain of Software Architecture Visualization[7]

Figure 2 shows Software Architecture Visualization Tool-chain that used in previous researches. Source

Navigator is an open-source tool that analyzes both C and Java as a parser in the existing software architecture

visualization Tool-Chain. As the first step of this visualization, a file is created as a result of analyzing the target

source code using Source Navigator. Although a total of 29 source code analysis files are provided as types of

files, there are few types of practically useful analysis result files. When the target source code is written in Java

code, there are fewer than 10 useful information can be derived, and there is a limit to obtaining specific

information or additional information of the target source code [8]. In addition, in order to apply the analyzed

result file to the Tool-Chain, an external program called 'dbdump' must be used, and the analyzed content is stored

in the database almost as it is. In other words, since unnecessary work is required to interpret and move data,

when the size of the target code is large, more time is required in the program for information analysis, movement,

and storage. Moreover, since information is stored in the database, there is a disadvantage that new information

must be extracted only from the information stored in the database, and additionally, the process of searching and

extracting through a query is additionally required for this extraction operation. Therefore, there is a problem in

terms of optimization of the query statement in the process of using the query statement. To improve on these

problems, we need a parser that can directly get the information we need and can provide more information.

3.2 Our Proposed Tool-Chain for Software Visualization

Figure 3. Proposed Tool-Chain for Software Visualization

92 International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

Figure 3 shows the schematic diagram of the Tool-Chain within the software architecture visualization with

the method proposed in this paper. The source navigator, which was used as a static analysis tool of analyzing

source code, is replaced with a static analysis for Java called ‘Java parser’. Instead of the file extracted by the

source navigator, the Java parser creates information in AST (Abstract Sytax Tree) form and stores the extracted

results in a Java object. The AST has a top-down structure, allowing top-down access to specific detailed

information. You can use the supported libraries to find and work with the specific syntax that you want in the

AST. Therefore, the new Tool-Chain uses the JavaParser object to create an AST as an object rather than a file,

and extracts the desired data using the created object. In addition, necessary information and information obtained

through analysis are processed and stored as objects. This allows for more flexible processing than parsers that

used to use and optionally stores the results in a database. By using this method, it is possible to increase

modularity by replacing the complexity problem of the existing query statement and to obtain data directly from

the object, so the additional tasks that we metioned above can be significantly reduced. Also, Source Navigator

imported from legacy tools runs as a process, while Java parser uses Java objects. This tool can also be run

together as a process in a Tool-Chain running in Java Eclipse. In other words, since it operates only within the

JVM, problems such as specifying the path of the existing source navigator and accessing the OS are eliminated,

increasing the modularity of the Tool-Chain.

We choose to create graphs using PlantUML instead of GraphViz as a visualization tool. Both Graphviz and

PlantUML generate plots automatically via the Dot language. The tool supports a variety of diagrams, including

sequence diagrams, use case diagrams, class diagrams, and more. PlantUML is an open-source extension of

Graphviz that provides more convenient support for UML drawing. PlantUML can easily visualize various

diagrams by changing the shape of the Dot language for each diagram. It can be applied to Tool-Chain in the

same way as GraphViz, and you can use GraphViz's dot language as needed. Therefore, the new Tool-Chain

handles all data analysis and storage in the JVM. Therefore, the parsing step is simple compared to the previous

Source Navigator and DB installation and connection. DB can be selectively applied, and most processing is

possible with one Java program, and data to be analyzed can be directly defined and extended.

3.3 Design restoration using Java parser and PlantUML

Figure 4. Steps for New Tool Chain

Figure 4 shows the Software Architecture Visualization Tool-Chain process to recover desgin in UML form

from source code that is written in Java. The following shows the Tool-Chain process using Java parser and

PlantUML step by step.

Automatic UML Design Extraction with Software Visualization based on Reverse Engineering 93

Step 1. First, when the program is executed, the Tool-Chain reads the configuration file, the library to be used,

the path for the target source code. And then, it initializes the Java parser object. This initialized parser parses the

target source code and generates AST after a static analysis of the source code. In general, program will generate

one AST per one Java file.

Figure 5. AST Structure diagram

Step 2. In this step, DataMaker iterates through the generated AST, and it extracts the necessary information that

set up in DataMaker. And then, it creates and modifies data objects with that information [4]. It extracts the

necessary information from each line of codes to create a data object or add information. DataMaker leverages

the AST structure to extract the information that are set. Then, it creates a data object or adds information to

objects. The extracted and created data objects are collected and managed in the DataList. This operation is

repeated until all files are cycled, creating and updating data objects in the DataList. Figure 5 shows some of the

AST structures that mentioned above. Nodes such as methods and constructors exist inside the class Node

structure, and MethodCallExpr nodes and If Statement nodes exist inside the method nodes.

Step 3. In this step, the program creates a script file for the visualization using the DataList completed through

GraphMaker, a class for design restoration. GraphMaker writes scripts to utilize PlantUML. ClassDgMaker needs

class information and information such as methods, references, and inheritance relationships to generate class

diagrams. SequenceDgMaker needs information such as the object to call, method calls, and order to create a

sequence diagram. Following these rules, GraphMaker completes a single script by appending the specified rules

of Dot language and the necessary data to the string.

Step 4. In this step, the program runs plantUML on the OS using Java process object via Tool-Chain. The

plantUML draws a graph based on the script that are created in the previous step, and recovers the design for the

program from the source code. Then, users review the result with the existing design documentation.

4. Applied Practice with Online Shopping Mall

4.1 Target source code

Apply the proposed method to design a simple online shopping mall data system. The requirements are:

⚫ The shopping mall system stores account and product information.

⚫ Each account has a username, a password, and a balance of account.

⚫ Each product has a name, a price, and product ID.

⚫ Users access to their account via their username and password.

⚫ The user adds the balance to the account.

⚫ The user purchases a product with the balance.

94 International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

Figure 6. Online Shop System Diagrams

Figure 6 shows the diagram generated according to the requirements. From left, there are Use-Case, Class, and

Sequence diagrams.

4.2 Design restoration

Step 1. First, program executes the Tool-Chain by setting the target source code and library information for the

Online shopping mall to recover the design for. Figure 7 shows the source code for the 'shop' class, which is the

code written according to the design document and requirements of Figure 6, and the 'TestScenario' class for

testing this shop class.

Figure 7. Part of the input source code to be applied to the object-oriented Tool-Chain

Step 2. Executing the program loops through the AST, which is the result of parsing the target source code,

making it a data object and completing the DataList.

Step 3. Using the DataList and the Script Maker to create script statements.

Automatic UML Design Extraction with Software Visualization based on Reverse Engineering 95

Figure 8. Part of the generated script statement

In Figure 8, the script on the left shows source code to draw a class diagram, and the script on the right is for

drawing a sequence diagram.

Step 4. Finally, the program recovers the design by creating a diagram through the script file.

Figure 9. Restored Diagram

Comparing Figure 6 with Figure 9, it can be seen that the diagram has been restored similarly. Looking at the

code in Figure 9, the TestScenario class was created by integrating Manage and User. The class diagram in Figure

9 is recoverd based on the fields and methods of the coresponding class. Then, we associate reference

relationships between classes based on invocations. Therefore, you can see the difference in Figure 9 in that the

has relationship is expressed as a Map.

Similar to the Use-Case diagram, the Sequence Diagram creates labels based on the methods in the Test Scenario

and restores the object's method invocation relationship. The purchase scenario in Figure 6 is designed to adjust

the amount using a price (-price). However, in the code implemented in practice, the user's ability to purchase

controls the cost. Therefore, it satisfies the requirement of “purchase one product with the balance of the logged-

in account”, but it can be seen that the implementation is different from the design. Also, as in Use-Case, Manage

and User are unified into TestScenario. Therefore, there is no Manage Actor of Use-Case, so it can be judged

whether the requirements are reflected according to the viewpoint of performing TestScenario. In the

implemented code, since there is no case to call or use the Shop class by distinguishing actors, it can be determined

that more implementations for users and administrators of the requirements are needed.

96 International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

5. Conclusion

In various areas of the 4th industry, a big issue is software quality enhancement for stability and reliability

of the smart software systems. After revising software promotion law in 2020, we must clearly define

requirements and separate design parts and implementation parts of an all-public software development

contracts. This means who to be responsible for and how to sperate between requirement & high-level design

and low-level design & implementation. We should validate the product whether a software development is

followed the requirements of a project or not. Therefore, our research focus on automated UML design

extraction with software visualization based on reverse engineering. The proposed method can quickly and

easily recover the UML design from the source code through the Tool-Chain system. As a result, we can

compare the original and manual design with the design of reverse engineering. Now we need to quantify

completely and verify the complexity of the design and source code.

Through the proposed method, a more accurate design could be extracted by improving and extracting more

information from the source code. In addition, the modularity of the Tool-Chain is increased by reducing

unnecessary processes. We are going to research further on the software design and source code complexity

matrix for increasing modularity.

Acknowledgement

This work was supported by the National Research Foundation NRF), Korea, under project BK21 FOUR,

and also by Basic Science Research Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education (2021R1I1A305040711).

References

[1] S. Moon, and R. Kim, "Code Structure Visualization with A Tool-Chain Method", International Journal of Applied

Engineering Research, ISSN 0973-4562 Vol.10 No.99, 2015.

[2] C. Kim, J. Park, "A Software Maintenance Capability Maturity Model Based on Service", Korea Institute of

Information Technology, pp.173-184, 2014.

DOI: http://dx.doi.org/10.14801/kiitr.2014.12.5.173

[3] J. Chikofsky, H. Cross, “Reverse engineering and design recovery: A taxonomy” IEEE Software, Vol.7, No.1, pp. 13-

17, 1990.

DOI: https://doi.org/10.1109/52.43044

[4] J. Park, et al, “Building a Code Visualization Process to Extract Bad Smell Codes”, KIPS Transactions on Software

and Data Engineering, Vol.8, No.12, 465~472, 2019.

[5] S. Jung, et al “Code Visualization with Object-Oriented Mapping Structure for Object Traceability”, The Korea Smart

Media Society Spring Conference 2021, Vol 10 Issue 1, 11-14, 2021.

DOI: https://doi.org/10.3745/KTSDE.2019.8.12.465

[6] B. Park, et al, "Best Practices on Software Development and Management Process for the Republic of Korea Army

Information System", Korean Society of Information Sciences, Vol.47 No.10, 911-925, 2020

DOI: https://doi.org/10.5626/JOK.2020.47.10.911

[7] W. Lee, et al. "The Constructing & Visualizing Practices in Effective Static Analyzer for analyzing the Quality of

Object-Oriented Source Code", The Korea Information Processing Society (KIPS) Fall Conference 2019, Vol. 38, No.2,

704-707, 2019.

[8] B. Park, et al. "A Case Study on Improving SW Quality through Software Visualization ", Journal of the Korean

Society of Information Sciences, Vol.41, No.11, 935-942, 2014.

DOI: https://doi.org/10.5626/JOK.2014.41.11.935

