DOI QR코드

DOI QR Code

Development of COVID-19 Neutralizing Antibody (NAb) Detection Kits Using the S1 RBD Protein of SARS-CoV-2

코로나 바이러스 감염증-19의 재조합 S1 RBD 단백질을 이용한 COVID-19 바이러스의 중화항체 검사 키트의 개발

  • Choi, Dong Ok (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Lee, Kang Moon (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University)
  • 최동옥 (한국산업기술대학교 생명화학공학과) ;
  • 이강문 (한국산업기술대학교 생명화학공학과)
  • Received : 2021.07.03
  • Accepted : 2021.08.22
  • Published : 2021.09.30

Abstract

The COVID-19 virus is a β-genus virus that causes infection by mediating the angiotensin convertible enzyme 2 (ACE2) receptor, which is distributed in large numbers in the human respiratory tract. The disease requires effective post-management of antibody production by complete healers and vaccinators because there is no perfect remedy for the virus infection. This study aimed to develop recombinant proteins specifically responsive to neutralizing antibodies in clinical specimens and use them to develop a rapid diagnostic kit to diagnose neutralizing antibodies quickly and conveniently against the COVID-19 virus and confirm the possibility of commercialization through a performance evaluation. Rapid diagnostic kits using COVID-19 S1 RBD recombinant proteins can be applied to rapid diagnostic kits, with positive percentage agreement (PPA) and negative percentage agreement (NPA) of 100% and 98.3%, respectively, compared to the U.S. FDA-approved ELISA kits. If the performance of the rapid diagnostic kit is improved and neutralizing antibodies can be analyzed quantitatively using quantitative analysis equipment, it can be used as important data to predict immunity to the COVID-19 virus and determine additional vaccinations.

코로나바이러스감염증-19는 사람의 호흡기관에 다수로 분포하는 안지오텐신전환효소2, angiotensin converting enzyme 2 (ACE2)를 매개하여 감염을 일으키는 β-genus 바이러스이고 완치환자 및 백신 접종자의 항체생성에 대한 효율적인 사후관리가 필요한 질병을 유발하는 바이러스다. 이 논문에서는 임상 시료의 중화항체와 특이적으로 반응하는 재조합 단백질을 개발하고 이를 이용하여 COVID-19 바이러스에 대한 중화항체를 빠르고 편리하게 진단하는 신속 진단 키트를 개발하고 그것의 성능 평가를 통하여 제품화 가능성을 확인하는 것을 목표로 하였다. COVID-19 S1 RBD 재조합 단백질을 사용한 신속 진단 키트의 양성 퍼센트 일치(PPA) 및 음성 퍼센트 일치(NPA)가 미국 FDA EUA에서 승인한 ELISA 키트와 비교했을 때 각각 100% 및 98.3%인 점에서 신속 진단 키트에 적용할 수 있을 것으로 확인하였다. 향후 신속 진단 키트의 성능을 개선하고 정량 분석 장비를 통해 중화항체를 정량적으로 분석이 가능하면 제품화 통해 검체내의 중화항체 유무와 양을 확인함으로써 COVID-19 바이러스에 대한 면역성을 예측하고 추가 예방접종 여부를 판단하는 중요한 자료로 활용될 수 있을 것으로 생각한다.

Keywords

Acknowledgement

We thank Lee KM, professor of Department of Chemical Engineering & Biotechnology, Korea Polytechnic University (Korea, Gyeonggi-do) to help of advisory works to accomplish overall experimental designs.

References

  1. Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab. 2020;318: E736-741. https://doi.org/10.1152/ajpendo.00124.2020
  2. King RG, Silva-Sanchez A, Peel JN, Botta D, Meza-Perez S, Allie R, et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 in mice. bioRxiv [Preprint]. 2020;11:2020.10.10.331348. https://doi.org/10.1101/2020.10.10.331348
  3. World Health Organization (WHO). WHO COVID-19 Dashboard [Internet]. Geneva: World Health Organization; 2020. [cited 2021 March 17]. Available from: https://covid19.who.int/
  4. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533-534. https://doi.org/10.1016/S1473-3099(20)30120-1
  5. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536-544 https://doi.org/10.1038/s41564-020-0695-z
  6. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514-523. https://doi.org/10.1016/S0140-6736(20)30154-9
  7. Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Ann Intern Med. 2021;174:69-79. https://doi.org/10.7326/M20-5008
  8. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382:1177-1179. https://doi.org/10.1056/NEJMc2001737
  9. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41:1141-1149. https://doi.org/10.1038/s41401-020-0485-4
  10. Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251:228-248. https://doi.org/10.1002/path.5471
  11. Connors M, Graham BS, Lane HC, Fauci AS. SARS-CoV-2 vaccines: much accomplished, much to learn. Ann Intern Med. 2021;174:687-690. https://doi.org/10.7326/M21-0111
  12. Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020;14:12522-12537. https://doi.org/10.1021/acsnano.0c07197
  13. Custers J, Kim D, Leyssen M, Gurwith M, Tomaka F, Robertson J, et al. Vaccines based on replication incompetent Ad26 viral vectors: standardized template with key considerations for a risk/benefit assessment. Vaccine. 2021;39:3081-3101. https://doi.org/10.1016/j.vaccine.2020.09.018
  14. Muruato AE, Fontes-Garfias CR, Ren P, Garcia-Blanco MA, Menachery VD, Xie X, et al. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nat Commun. 2020;11:4059. https://doi.org/10.1038/s41467-020-17892-0
  15. Morens DM, Folkers GK. What is a pandemic? J Infect Dis. 2009;200:1018-1021. https://doi.org/10.1086/644537
  16. Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. 2021;39:3409-3418. https://doi.org/10.1080/07391102.2020.1758788
  17. Speiser DE, Bachmann MF. COVID-19: Mechanisms of vaccination and immunity. Vaccines (Basel). 2020;8:404. https://doi.org/10.3390/vaccines8030404
  18. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383:2603-2615. https://doi.org/10.1056/NEJMoa2034577
  19. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in brazil, south africa, and the UK. Lancet. 2021;397:99-111. https://doi.org/10.1016/S0140-6736(20)32661-1
  20. Torjesen I. Covid-19 vaccine shortages: what is the cause and what are the implications? BMJ. 2021;372:n781. https://doi.org/10.1136/bmj.n781
  21. Micocci M, Gordon AL, Allen AJ, Hicks T, Kierkegaard P, McLister A, et al. COVID-19 testing in english care homes and implications for staff and residents. Age Ageing. 2021;50:668-672. https://doi.org/10.1093/ageing/afab015
  22. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77:8801-8811. https://doi.org/10.1128/jvi.77.16.8801-8811.2003
  23. Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology. 2020;30:981-988. https://doi.org/10.1093/glycob/cwaa042