References
- Kim, J.-S., Bang, B. Y., Koo, B.-J., and Ryu, T. U., "Thermochemical Conversion System by Recirculation of Heat Carrier and Gases Thereby," KR. Patent No. 10-2711810 (2020).
- Sriningsih, W., Saerodji, M. G., Trisunaryanti, W., Triyono, Armunanato, R., and Falah, I. I., "Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co-Mo Metals," Procedia Environ. Sci., 20, 215-224 (2014). https://doi.org/10.1016/j.proenv.2014.03.028
- Park, K.-B., Jeong, Y.-S., and Kim, J.-S., "Activator-assisted Pyrolysis of Polypropylene," Appl. Energ., 253, 113558 (2019). https://doi.org/10.1016/j.apenergy.2019.113558
- Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., and Aroua, M. K., "A Review on Pyrolysis of Plastic Wastes," Energy Conv. Manag., 115, 308-326 (2016). https://doi.org/10.1016/j.enconman.2016.02.037
- Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., and Yoshikawa, K., "Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors," Energy Procedia, 47, 180-188 (2014). https://doi.org/10.1016/j.egypro.2014.01.212
- Geyer, R., Jambeck, J. R., and Law, K. L., "Production, Use, and Fate of All Plastics Ever Made," Science Advances, 3(7) e1700782 (2017). https://doi.org/10.1126/sciadv.1700782
- Lee, H. S., "Korean Social Trends 2018 - Generation and Recycling of Waste Plastics," Statistical Research Institut, (2018).
- Kiran, N., Ekinci, E., and Snape, C. E., "Recyling of Plastic Wastes Via Pyrolysis," Resour. Conserv. Recycl., 29(4), 273-283 (2000). https://doi.org/10.1016/S0921-3449(00)00052-5
- Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., and Nizami, A. S., "Effect of Plastic Waste Types on Pyrolysis Liquid Oil," Int. Biodeterior. Biodegrad., 119, 239-252 (2017). https://doi.org/10.1016/j.ibiod.2016.09.017
- Piao, G., Aono, S., Kondoh, M., Yamazaki, R., and Mori, S., "Combustion Test of Refuse Derived Fuel in Fluidized Bed," Waste Manage., 20(5-6), 443-447 (2000). https://doi.org/10.1016/S0956-053X(00)00009-X
- Miandad, R., Barakat, M. A., Aburiazaiza, A. S., and Rehan, M., Nizami, A. S., "Catalytic Pyrolysis of Plastic Waste: A Review," Process Saf. Environ. Protect., 102, 822-838 (2016). https://doi.org/10.1016/j.psep.2016.06.022
- You, Y.-S., Kim, M.-K., Park, M.-J., and Choi, S.-W., "Development of Oxy-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk," Clean Technol., 20(3), 205-211 (2014). https://doi.org/10.7464/ksct.2014.20.3.205
- Gug, J., Cacciola, D., and Sobkowicz, M. J., "Processing and Properties of a Solid Energy Fuel From Municipal Solid Waste (MSW) and Recycled Plastics," Waste Manage., 35, 283-292 (2015). https://doi.org/10.1016/j.wasman.2014.09.031
- Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M. I., Dhavamani, J., Gardy, J., Hassanpour, A., and Nizami, A.-S., "Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries," Frontiers in Energy Research, 7, 27 (2019). https://doi.org/10.3389/fenrg.2019.00027
- Kim, Y.-M., Lee, B., Han, T. U., Kim, S., Yu, T.-U., Bang, B. Y., Kim, J.-S., and Park, Y.-K., "Research on Pyrolysis Properties of Waste Plastic Films," Appl. Chem. Eng., 28(1), 23-28 (2017). https://doi.org/10.14478/ace.2016.1091
- Dawood, A., and Miura, K., "Catalytic Pyrolysis of γ-irradiated Polypropylene (PP) over HY-zeolite for Enhancing the Reactivity and the Product Selectivity," Polym. Degrad. Stabil., 76(1), 45-52 (2002). https://doi.org/10.1016/S0141-3910(01)00264-6
- Yu, F., Gao, L., Wang, W., Zhang, G., and Ji, J., "Bio-fuel Production from the Catalytic Pyrolysis of Soybean Oil over Me-Al-MCM-41 (Me=La, Ni or Fe) Mesoporous Materials," J. Anal. Appl. Pyrolysis., 104, 325-329 (2013). https://doi.org/10.1016/j.jaap.2013.06.017
- Cheng, S., Wei, L., Julson, J., Muthukumarappan, K., and Khare, R. P., "Upgrading Pyrolysis Bio-oil to Hydrocarbon Enriched Biofuel Overbifunctional Fe-Ni/HZSM-5 Catalyst in Supercritical Methanol," Fuel Process. Technol., 167, 117-126 (2017). https://doi.org/10.1016/j.fuproc.2017.06.032
- Murata, K., Kreethawate, L., Larpkiattaworn, S., and Inaba, M., "Evaluation of Ni-based Catalysts for the Catalytic Fast Pyrolysis of Jatropha Residues," J. Anal. Appl. Pyrolysis., 118, 308-316 (2016). https://doi.org/10.1016/j.jaap.2016.02.014
- Pitz, W. J., Cernansky, N. P., Dryer, F. L., Egolfopoulos, F. N., Farrell, J. T., Friend, D. G., and Pitsch, H., "Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels," SAE Tech. Pap. Ser., 195-216, (2007).
- Wang, L., Li, D., Koike, M., Watanabe, H., Xu, Y., Nakagawa, Y., and Tomishige, K., "Catalytic Performance and Charaterization of Ni-Co Catalysts for the Steam Reforming of Biomass Tar to Synthesis Gas," Fuel, 112, 654-661 (2013). https://doi.org/10.1016/j.fuel.2012.01.073
- Park, J. Y., and DOE, J.-W., "Utilization and Quality Standard of Fast Pyrolysis Bio-Oil," Trans. Korean Hydrogen New Energy Soc., 31(2), 223-233 (2020). https://doi.org/10.7316/KHNES.2020.31.2.223
- Kawamoto, H., Murayama, M., and Saka, S., "Pyrolysis Behavior of Levoglucosan as an Intermediate in Cellulose Pyrolysis : Polymerization into Polysaccharide as a Key Reaction to Carbonizedproduct Formation," J. Wood Sci., 49, 469-473 (2003). https://doi.org/10.1007/s10086-002-0487-5