DOI QR코드

DOI QR Code

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon

석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성

  • Lee, Jong-Jib (Department of Chemical Engineering, Kongju National University)
  • 이종집 (국립 공주대학교 화학공학부)
  • Received : 2021.08.03
  • Accepted : 2021.08.19
  • Published : 2021.09.30

Abstract

Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

석탄계 입상 활성탄(CGAC)에 의한 acid black 1 (AB1) 염료의 평형, 동력학 및 열역학적 특성을 초기농도, 접촉 시간, 온도 및 pH 를 흡착변수로 하여 조사하였다. 활성탄에 의한 AB1의 흡착반응은 산성에서는 활성탄의 표면(H+)과 AB1이 가지고 있는 sulfite ion (SO3-), nitrite ion (NO2-) 사이의 정전기적 인력에 의해 일어났고, 최고 흡착률은 pH 3에서 97.7%였다. AB1의 등온 데이터는 Freundlich 등온식에 가장 잘 맞았으며, 계산된 분리계수(1/n) 값으로부터 활성탄에 의한 AB1의 흡착이 효과적인 처리과정이 될 수 있음을 알았다. Temkin 식의 흡착열 관련상수의 값은 물리 흡착 공정(< 20 J mol-1)임을 나타냈다. 동역학 실험에서는 유사 2차 모델이 유사 1차 모델보다 더 일관성이 있었으며 추정된 평형 흡착량은 오차 백분율의 9.73% 이내에서 잘 일치하였다. 입자내 확산이 흡착 과정에서 속도 조절 단계였다. 활성화 에너지와 엔탈피 변화값으로부터 흡착반응이 물리흡착으로 진행되는 흡열반응임을 확인하였다. 엔트로피 변화는 활성탄 표면에서 AB1의 흡착이 일어나는 동안 고-액 계면에서 활발한 반응에 의해 엔트로피가 증가하는 것으로 나타났다. 자유에너지 변화는 온도증가와 함께 흡착반응의 자발성이 더 커지는 것을 나타냈다.

Keywords

References

  1. Malinauskiene, L., Bruze, M., Ryberg, K., Zimerson, E., and Isaksson, M., "Contact Allergy from Disperse Dyes in Textiles-a Review," Contact derm., 68(2), 65-75 (2013). https://doi.org/10.1111/cod.12001
  2. European Commission, Scientific Committee on Cosumer Safety, Acid Black 1, (2009).
  3. Sun, D., Zhang, X., Wu, Y., and Liu, X., "Adsorption of Anionic Dyes from Aqueous Solution on Fly Ash," J. Hazard. Mater., 181(1-3), 335-342 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.015
  4. Sankar, M., Sekaran, G., Sadulla, S., and Ramasami, T., "Removal of Diazo and Triphenylmethane Dyes from Aqueous Solutions through an Adsorption Process," J. Chem. Technol. Biotechnol., 74(4), 337-344 (1999). https://doi.org/10.1002/(SICI)1097-4660(199904)74:4<337::AID-JCTB39>3.0.CO;2-U
  5. Hoseinzadeh, E., Rahmanie, A. R., Asgari, G., Mckay, G., and Dehghanian, R., "Adsorption of Acid Black 1 by Using Activated Carbon Prepared from Scrap Tires Kinetic and Equilibrium Studies," J. Sci. Ind. Res., 71, 682-689 (2012).
  6. Peng, X., Hu, X., Fua, D., and Lam, F. L. Y., "Adsorption Removal of Acid Black 1 from Aqueous Solution Using Ordered Mesoporous Carbon," Appl. Surf. Sci., 294, 71-80 (2014). https://doi.org/10.1016/j.apsusc.2013.11.157
  7. Fang, R., He, w., Xue, H., and Chen, W., "Synthesis and Characterization of a High-capacity Cationic Hydrogel Adsorbent and Its Application in the Removal of Acid Black 1 from Aqueous Solution," React. Funct. Polym., 102, 1-10 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.02.013
  8. Lee, J. J., "Characleristics and Parameters for Adsorption of Carbol Fuchsin Dye by Coal-based Activated Carbon: Kinetic and Thermodynamic," Appl. Chem. Eng., 32(3), 283-289 (2021). https://doi.org/10.14478/ACE.2021.1010
  9. Marrakchi, F., Ahmed, M. J., Khanday, W. A., Asif, M., and Hameed, B. H., "Mesoporous Carbonaceous Material from Fish Scales as Low-Cost Adsorbent for Reactive Orange 16 Adsorption," J. Taiwan Inst. Chem. Eng., 71, 47-54 (2017). https://doi.org/10.1016/j.jtice.2016.12.026
  10. Lee, J. J., "Characleristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon," Clean Technol., 26(2), 122-130 (2020). https://doi.org/10.7464/KSCT.2020.26.2.122
  11. Lee, J. J., "Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon," Clean. Technol., 25(1), 56-62 (2019). https://doi.org/10.7464/KSCT.2019.25.1.056
  12. Afshin, S., Mokhtari, S. A., Vosoughi, M., Sadeghi, H., and Rashtbari, Y., "Data of Adsorption of Basic Blue 41 Dye from Aqueous Solutions by Activated Carbon Prepared from Filamentous Algae," Data Brief, 21, 1008-1013 (2018). https://doi.org/10.1016/j.dib.2018.10.023
  13. Akbarnejad, S., Amooey, A. A., and Ghasemi, S., "High Effective Adsorption of Acid Fuchsin Dye Using Magnetic Biodegradable Polymer-based Nanocomposite from Aqueous Solutions," Microchem. J., 149, 103966 (2019). https://doi.org/10.1016/j.microc.2019.103966
  14. Fu, J., Zhu, J., Wang, Z., Wang, Y., Wang, S., Yan, R., and Xu, Q., "Highly-Efficient and Selective Adsorption of Anionic Dyes onto Hollow Polymer Microcapsules Having a High Surface-Density of Amino Groups: Isotherms, Kinetics, Thermodynamics and Mechanism," J. Colloid Interface Sci., 542, 123-135 (2019). https://doi.org/10.1016/j.jcis.2019.01.131
  15. Kim, Y.-S., and Kim, J.-H., "Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Paclitaxel onto Sylopute," J. Chem. Thermodyn., 130, 104-113 (2019). https://doi.org/10.1016/j.jct.2018.10.005
  16. Hamza, W., Dammak, N., Hadjltaief, H. B., Eloussaief, M., and Benzina, M., "Sono-assisted Adsorption of Cristal Violet Dye onto Tunisian Smectite Clay: Characterization, Kinetics and Adsorption Isotherms," Ecotoxicol. Environ. Safe., 163, 365-371 (2019). https://doi.org/10.1016/j.ecoenv.2018.07.021
  17. Al-Kadhi, N. S., "The Kinetic and Thermodynamic Study of the Adsorption Lissamine Green B dye by Micro-particle of Wild Plants from Aqueous Solutions," Egypt. J. Aquat. Res., 45, 231-238 (2019). https://doi.org/10.1016/j.ejar.2019.05.004
  18. Lee, J. J., "Adsorption Characteristics of Reactive Red 120 by Coal-based Granular Activated Carbon : Isotherm, Kinetic and Thermodynamic Parameters," Appl. Chem. Eng., 31(2), 164-171 (2020).
  19. Souza, T. N. V., Carvalho, S. M. L., Vieira, M. G. A., Silva, M. G. C., and Brasil, D. S. B., "Adsorption of Basic Dyes onto Activated Carbon: Experimental and Theoretical Investigation of Chemical Reactivity of Basic Dyes Using DFT-based Descriptors," Appl. Surf. Sci., 448, 662-670 (2018). https://doi.org/10.1016/j.apsusc.2018.04.087
  20. Xie, G., Wang, B., and Yan, H., "Study on the Adsorption Thermodynamics of Carbofuran in Soil," J. Anhui Agri. Sci., 34, 4695-4696 (2006).
  21. Belbachir, I., and Makhoukhi, B., "Adsorption of Bezathren Dyes onto Sodic Bentonite from Aqueous Solutions," J. Taiwan Inst. Chem. Eng., 75, 105-111 (2017). https://doi.org/10.1016/j.jtice.2016.09.042
  22. Hasani, S. Ardejani, F. D., and Olya, M. E., "Equilibrium and Kinetic Studies of Azo Dye (Basic Red 18) Adsorption onto Montmorillonite: Numerical Simulation and Laboratory Experiments," Korean J. Chem. Eng., 34(8), 2265-2274 (2017). https://doi.org/10.1007/s11814-017-0110-5