INTUITIONISTIC FUZZY PMS-SUBALGEBRA OF A PMS-ALGEBRA

BEZA LAMESGIN DERSEH*, BERHANU ASSAYE ALABA, AND YOHANNES GEDAMU WONDIFRAW

ABSTRACT. In this paper, we introduce the notion of intuitionistic fuzzy PMS-subalgebra of a PMS-algebra. The idea of level subsets of an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. The relation between intuitionistic fuzzy sets and their level sets in a PMS-algebra is examined, and some interesting results are obtained.

1. Introduction

In this paper, we introduced the notion of intuitionistic fuzzy PMS-subalgebras of PMS-algebras and investigate some of their properties. The idea of level subsets of an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. The relation between intuitionistic fuzzy sets and their level sets in a PMS-algebra is examined, and some interesting results are obtained.
2. Preliminaries

In this section, we recall some basic definitions and results that are used in the study of this paper.

Definition 2.1. [12] A nonempty set X with a constant 0 and a binary operation '$*$' is called PMS-algebra if it satisfies the following axioms.

1. $0 * x = x$
2. $(y * x) * (z * x) = z * y$, for all $x, y, z \in X$.

In X, we define a binary relation \leq by $x \leq y$ if and only if $x * y = 0$.

Definition 2.2. [12] Let S be a nonempty subset of a PMS-algebra X, then S is called a PMS-subalgebra of X if $x * y \in S$, for all $x, y \in S$.

Example 2.3. [12] Let Z be the set of all integers, and let $*$ be a binary relation on Z defined by $x * y = y - x$, for all $x, y \in Z$, where '$-$' the usual subtraction of integers. Then $(Z, *, 0)$ is a PMS-algebra since

1. $0 * x = x - 0 = x$
2. $(y * x) * (z * x) = (z * x) - (y * x) = (x - z) - (x - y) = y - z = z * y$.

Clearly, the set E of all even integers is a PMS-subalgebra of a PMS-algebra Z, since $x * y = y - x \in E$ for all $x, y \in E$.

Proposition 2.4. [12] In any PMS-algebra $(X, *, 0)$ the following properties hold for all $x, y, z \in X$.

1. $x * x = 0$
2. $(y * x) * x = y$
3. $x * (y * x) = y * 0$
4. $(y * x) * z = (z * x) * y$
5. $(x * y) * 0 = y * x = (0 * y) * (0 * x)$

Definition 2.5. [15] Let X be a nonempty set. A fuzzy subset A of the set X is defined as $A = \{(x, \mu_A(x)) | x \in X\}$ where the mapping $\mu_A : X \rightarrow [0, 1]$ defines the degree of membership.

Definition 2.6. [11] A fuzzy set A in a PMS-algebra X is called fuzzy PMS-subalgebra of X if $\mu_A(x * y) \geq \min\{\mu_A(x), \mu_A(y)\}$ for all $x, y \in X$.

Definition 2.7. [2, 4] An intuitionistic fuzzy set (IFS) A in a nonempty set X is an object having the form $A = \{(x, \mu_A(x), \nu_A(x)) | x \in X\}$, where the functions $\mu_A : X \rightarrow [0, 1]$ and $\nu_A : X \rightarrow [0, 1]$ define the degree of membership and the degree of non membership, respectively, satisfying the condition $0 \leq \mu_A(x) + \nu_A(x) \leq 1$, for all $x \in X$.

Remark 2.8. Ordinary fuzzy sets over X may be viewed as special intuitionistic fuzzy sets with the non membership function $\nu_A(x) = 1 - \mu_A(x)$. So each Ordinary fuzzy set may be written as $\{(x, \mu_A(x), 1 - \mu_A(x)) | x \in X\}$ to define an intuitionistic fuzzy set. For the sake of simplicity we write $A = (\mu_A, \nu_A)$ for an intuitionistic fuzzy set $A = \{(x, \mu_A(x), \nu_A(x)) | x \in X\}$.

Definition 2.9. [2–4] Let A and B be two intuitionistic fuzzy subsets of the set X, where $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$, then
Let \(A \times B = \{ (x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x))) \mid x \in X \} \)

2. \(A \cup B = \{ (x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x))) \mid x \in X \} \)

3. \(\bar{A} = \{ (x, \nu_A(x), \mu_A(x)) \mid x \in X \} \)

4. \(\Box A = \{ (x, \mu_A(x), 1 - \mu_A(x)) \mid x \in X \} \)

5. \(\Diamond A = \{ (x, 1 - \nu_A(x), \nu_A(x)) \mid x \in X \} \)

3. Intuitionistic Fuzzy PMS-subalgebra

In this section we introduce the notion of intuitionistic fuzzy PMS-subalgebra and investigated some of its properties. Throughout this and the next section \(X \) denotes a PMS-algebra, unless otherwise specified.

DEFINITION 3.1. An intuitionistic fuzzy subset \(A = (\mu_A, \nu_A) \) of a PMS-algebra \(X \) is called an intuitionistic fuzzy PMS-subalgebra of \(X \) if

1. \(\mu_A(x \ast y) \geq \min\{\mu_A(x), \mu_A(y)\} \) and
2. \(\nu_A(x \ast y) \leq \max\{\nu_A(x), \nu_A(y)\} \) for all \(x, y \in X \)

EXAMPLE 3.2. Let \(X = \{01, 1, 2, 3\} \) be a set with the following table.

\[
\begin{array}{c|cccc}
 * & 0 & 1 & 2 & 3 \\
 \\
 0 & 0 & 1 & 2 & 3 \\
1 & 2 & 0 & 1 & 3 \\
2 & 1 & 2 & 0 & 1 \\
3 & 3 & 1 & 2 & 0 \\
\end{array}
\]

Then \((X, \ast, 0)\) is a PMS-algebra and \(S = \{0, 1, 2\} \) is a PMS-subalgebra \(X \).

Let \(A = (\mu_A, \nu_A) \) be an intuitionistic fuzzy set in \(X \) defined by

\[
\mu_A(x) = \begin{cases}
1 & \text{if } x = 0 \\
0.5 & \text{if } x = 1, 2 \\
0 & \text{if } x = 3
\end{cases}
\]

and

\[
\nu_A(x) = \begin{cases}
0 & \text{if } x = 0 \\
0.4 & \text{if } x = 1, 2 \\
1 & \text{if } x = 3
\end{cases}
\]

For intuitionistic fuzzy set \(A \) in a PMS-algebra \(X \) with membership values \(\mu_A(x) \) and non membership values \(\nu_A(x) \) as defined above, definition 3.1 is satisfied. Therefore \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy PMS-subalgebra of the PMS-algebra \(X \).

LEMMA 3.3. If \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy PMS-subalgebra of \(X \), then \(\mu_A(0) \geq \mu_A(x) \) and \(\nu_A(0) \leq \nu_A(x) \) for all \(x \in X \)

Proof. Suppose \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy PMS-subalgebra of \(X \). Since \(x \ast x = 0 \) for every \(x \in X \) by proposition 2.1(1), we have

\[
\mu_A(0) = \mu_A(x \ast x) \geq \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)
\]

and

\[
\nu_A(0) = \nu_A(x \ast x) \leq \max\{\nu_A(x), \nu_A(x)\} = \nu_A(x)
\]

Hence \(\mu_A(0) \geq \mu_A(x) \) and \(\nu_A(0) \leq \nu_A(x) \) for all \(x \in X \).

LEMMA 3.4. Let \(A = (\mu_A, \nu_A) \) be an intuitionistic fuzzy PMS-subalgebra of \(X \), if \(x \ast y \leq z \), then \(\mu_A(x) \geq \min\{1, \mu_A(y), \mu_A(z)\} \) and \(\nu_A(x) \leq \max\{\nu_A(y), \nu_A(z)\} \).

Proof. Suppose \(A = (\mu_A, \nu_A) \) be an intuitionistic fuzzy PMS-subalgebra of \(X \). Let \(x, y, z \in X \) such that \(x \ast y \leq z \). Then by the binary relation \(\leq \) defined in \(X \), we have

\[
\mu_A(0) = \mu_A(x \ast x) \geq \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)
\]

and

\[
\nu_A(0) = \nu_A(x \ast x) \leq \max\{\nu_A(x), \nu_A(x)\} = \nu_A(x)
\]

Hence \(\mu_A(0) \geq \mu_A(x) \) and \(\nu_A(0) \leq \nu_A(x) \) for all \(x \in X \).
\((x \ast y) \ast z = 0\). Thus by definition 2.1 and proposition 2.4 (4), we have
\[
\mu_A(x) = \mu_A(0 \ast x) = \mu_A(((x \ast y) \ast x) \ast x) \\
= \mu_A(((x \ast y) \ast x) \ast x) \\
= \mu_A((x \ast y) \ast (z \ast y)) \\
= \mu_A(0 \ast (z \ast y)) \\
= \mu_A(z \ast y) \geq \min\{\mu_A(z), \mu_A(y)\}
\]
Hence \(\mu_A(x) \geq \min\{\mu_A(z), \mu_A(y)\}\)

Similarly, \(\nu_A(x) \leq \max\{\nu_A(z), \nu_A(y)\}\)

Theorem 3.5. Let \(A = (\mu_A, \nu_A)\) be an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra \(X\). If \(x \in X\) and let \(x, y \in X\) such that \(\mu_A(x \ast y) = \mu_A(y)\) and \(\nu_A(x \ast y) = \nu_A(y)\) for each \(y \in X\), then \(\mu_A(x) = \mu_A(0)\) and \(\nu_A(x) = \nu_A(0)\), where 0 is a constant in \(X\).

Proof. Suppose \(\mu_A(x \ast y) = \mu_A(y)\) and \(\nu_A(x \ast y) = \nu_A(y)\) for each \(y \in X\). Then we need to show that \(\mu_A(x) = \mu_A(0)\) and \(\nu_A(x) = \nu_A(0)\), where 0 is a constant in \(X\). By lemma 3.3, \(\mu_A(0) \geq \mu_A(x)\) and \(\nu_A(0) \leq \nu_A(x)\) for each \(x \in X\). By proposition 2.4 (2) \((x \ast 0) \ast 0 = x\). Then \(\mu_A(x) = \mu_A((x \ast 0) \ast 0) \geq \min\{\mu_A(x \ast 0), \mu_A(0)\}\) = \(\mu_A(0)\).

Also, \(\nu_A(x) = \nu_A((x \ast 0) \ast 0) \leq \max\{\nu_A(x \ast 0), \nu_A(0)\}\) = \(\nu_A(0)\).

Hence \(\mu_A(x) \geq \mu_A(0)\) and \(\nu_A(x) \leq \nu_A(0)\).

Therefore \(\mu_A(x) = \mu_A(0)\) and \(\nu_A(x) = \nu_A(0)\).

Conversely, Suppose \(\mu_A(x) = \mu_A(0)\) and \(\nu_A(x) = \nu_A(0)\). Then we need to prove that \(\mu_A(x \ast y) = \mu_A(y)\) and \(\nu_A(x \ast y) = \nu_A(y)\), for each \(y \in X\).

By lemma 3.3 \(\mu_A(x) \geq \mu_A(y)\) and \(\nu_A(x) \leq \nu_A(y)\) for each \(y \in X\). Since \(A\) is an intuitionistic fuzzy PMS-subalgebra of \(X\), then \(\mu_A(x \ast y) \geq \min\{\mu_A(x), \mu_A(y)\}\) = \(\mu_A(y)\) and \(\nu_A(x \ast y) \leq \max\{\nu_A(x), \nu_A(y)\}\) = \(\nu_A(y)\). Thus \(\mu_A(x \ast y) \geq \mu_A(y)\) and \(\nu_A(x \ast y) \leq \nu_A(y)\) for each \(y \in X\).

But, using Proposition 2.4 (2) and 2.4 (5) it follows that
\[
\mu_A(y) = \mu_A((x \ast y) \ast x) \geq \min\{\mu_A(x \ast y), \mu_A(x)\}
\]
\[
= \min\{\mu_A((x \ast y) \ast 0), \mu_A(x)\}
\]
\[
\geq \min\{\min\{\mu_A(x \ast y), \mu_A(0)\}, \mu_A(x)\}
\]
\[
= \min\{\mu_A(x \ast y), \mu_A(x)\} = \mu_A(x \ast y)
\]
and
\[
\nu_A(y) = \nu_A((x \ast y) \ast x) \leq \max\{\nu_A(x \ast y), \nu_A(x)\}
\]
\[
= \max\{\nu_A((x \ast y) \ast 0), \nu_A(x)\}
\]
\[
\leq \max\{\max\{\nu_A(x \ast y), \nu_A(0)\}, \nu_A(x)\}
\]
\[
= \max\{\nu_A(x \ast y), \nu_A(x)\} = \nu_A(x \ast y)
\]

Hence \(\mu_A(x \ast y) = \mu_A(y)\) and \(\nu_A(x \ast y) = \nu_A(y)\) for each \(y \in X\). □

Theorem 3.6. Let \(A = (\mu_A, \nu_A)\) be an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra \(X\). If \(\mu_A(x \ast y) = \mu_A(0)\) and \(\nu_A(x \ast y) = \nu_A(0)\) for all \(x, y \in X\), then \(\mu_A(x) = \mu_A(y)\) and \(\nu_A(x) = \nu_A(y)\).
Proof. Let \(x, y \in X \) such that \(\mu_A(x * y) = \mu_A(0) \) and \(\nu_A(x * y) = \nu_A(0) \).

Claim \(\mu_A(x) = \mu_A(y) \) and \(\nu_A(x) = \nu_A(y) \)

Now, \(\mu_A(x) = \mu_A((y * y) * x) \)
\[= \mu_A((x * y) * y) \]
\[\geq \min\{\mu_A(x * y), \mu_A(y)\} \]
\[= \min\{\mu_A(0), \mu_A(y)\} = \mu_A(y) \]

Conversely, \(\mu_A(y) = \mu_A((x * x) * y) \)
\[= \mu_A((y * x) * x) \]
\[\geq \min\{\mu_A(y * x), \mu_A(y)\} \]
\[= \min\{\mu_A((x * y) * 0), \mu_A(y)\} \]
\[\geq \min\{\min\{\mu_A(x * y), \mu_A(0)\}, \mu_A(x)\} \]
\[= \min\{\mu_A(0), \mu_A(x)\} = \mu_A(x) \]

Thus \(\mu_A(x) = \mu_A(y) \)

By similar argument we have \(\nu_A(x) = \nu_A(y) \) \(\square \)

Theorem 3.7. The intersection of any two intuitionistic fuzzy PMS-subalgebras of \(X \) is also an intuitionistic fuzzy PMS-subalgebra of \(X \).

Proof. Let \(A = (\mu_A, \nu_A) \) and \(B = (\mu_B, \nu_B) \) be any two intuitionistic fuzzy PMS-subalgebras of a PMS-algebra \(X \).

Claim: \(A \cap B \) is an intuitionistic fuzzy PMS-subalgebra of \(X \). Then for \(x, y \in X \), we have

\[
\mu_{A \cap B}(x * y) = \min\{\mu_A(x * y), \mu_B(x * y)\} \\
\geq \min\{\min\{\mu_A(x), \mu_B(x)\}, \min\{\mu_A(y), \mu_B(y)\}\} \\
= \min\{\min\{\mu_A(x), \mu_A(x)\}, \min\{\mu_A(y), \mu_B(y)\}\} \\
= \min\{\mu_A(x), \mu_B(x)\}
\]

and

\[
\nu_{A \cap B}(x * y) = \max\{\nu_A(x * y), \nu_B(x * y)\} \\
\leq \max\{\max\{\nu_A(x), \nu_A(y)\}, \max\{\nu_B(x), \nu_B(y)\}\} \\
= \max\{\max\{\nu_A(x), \nu_B(x)\}, \max\{\nu_A(y), \nu_B(y)\}\} \\
= \max\{\nu_A(x), \nu_B(x)\}
\]

Hence \(A \cap B \) is an intuitionistic fuzzy PMS-subalgebra of \(X \) \(\square \)

The above theorem proves that the intersection of any two intuitionistic fuzzy PMS-subalgebras of \(X \) is again an intuitionistic fuzzy subalgebra of \(X \). It can also be generalized to any family of intuitionistic fuzzy PMS-subalgebra of \(X \) as follows:

Corollary 3.8. If \(\{A_i : i \in I\} \) be a family of intuitionistic fuzzy PMS-subalgebra of \(X \), then \(\bigcap_{i \in I} A_i \) is also an intuitionistic fuzzy PMS-subalgebra of \(X \), where \(\cap_{i \in I} \mu_{A_i}(x) = \inf_{i \in I} \mu_{A_i}(x) \) and \(\cap_{i \in I} \nu_{A_i}(x) = \sup_{i \in I} \mu_{A_i}(x) \)

Remark 3.9. The union of any two intuitionistic fuzzy PMS-subalgebras of a PMS-algebra \(X \) is not necessarily an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra \(X \).
Example 3.10. Let $X = \{0, 1, 2, 3\}$ be a set with the table as in example 3.2 and $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy set in X as defined in example 3.2. Let $B = (\mu_B, \nu_B)$ be an intuitionistic fuzzy set in X defined by

$$
\mu_B(x) = \begin{cases}
1 & \text{if } x = 0 \\
0.6 & \text{if } x = 1, 3 \\
0 & \text{if } x = 2
\end{cases}
$$

and

$$
\nu_B(x) = \begin{cases}
0.2 & \text{if } x = 1, 3 \\
1 & \text{if } x = 2
\end{cases}
$$

Now, $\mu_{A*B} = \mu_{A*B}(2) = \max\{\mu_A(2), \mu_B(2)\} = \max\{0.5, 0\} = 0.5$ (i)

$\min\{\mu_{A*B}(1), \mu_{A*B}(0)\} = \min\{\max\{\mu_A(1), \mu_B(1)\}, \max\{\mu_A(0), \mu_B(0)\}\}$

$= \min\{\max\{0.5, 0.6\}, \max\{1, 1\}\}$

$= \min\{0.6, 1\} = 0.6$ (ii)

and

$\nu_{A*B}(1*0) = \nu_{A*B}(2) = \min\{\nu_A(2), \nu_B(2)\} = \min\{0.4, 1\} = 0.4$ (iii)

$\max\{\nu_{A*B}(1), \nu_{A*B}(0)\} = \max\{\min\{\mu_A(1), \nu_B(1)\}, \min\{\nu_A(0), \nu_B(0)\}\}$

$= \max\{\min\{0.4, 0.2\}, \min\{0, 0\}\}$

$= \max\{0.2, 0\} = 0.2$ (iv)

From (i) and (ii) we see that $\mu_{A*B}(1*0) = 0.5 < 0.6 = \min\{\mu_{A*B}(1), \mu_{A*B}(0)\}$ and from (iii) and (iv) we see that $\nu_{A*B}(1*0) = 0.4 > 0.2 = \max\{\nu_{A*B}(1), \nu_{A*B}(0)\}$ which is a contradiction. This shows that the union of any two intuitionistic fuzzy PMS-subalgebras of a PMS-algebra X may not be an intuitionistic fuzzy PMS-subalgebra.

Lemma 3.11. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in X. Then the following statements hold for any $x, y \in X$.

1. $1 - \max\{\mu_A(x), \mu_A(y)\} = \min\{1 - \mu_A(x), 1 - \mu_A(y)\}$
2. $1 - \min\{\mu_A(x), \mu_A(y)\} = \max\{1 - \mu_A(x), 1 - \mu_A(y)\}$
3. $1 - \max\{\nu_A(x), \nu_A(y)\} = \min\{1 - \nu_A(x), 1 - \nu_A(y)\}$
4. $1 - \min\{\nu_A(x), \nu_A(y)\} = \max\{1 - \nu_A(x), 1 - \nu_A(y)\}$

Now, we can prove the next two theorems using the above Lemma.

Theorem 3.12. An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a PMS-algebra X is an intuitionistic fuzzy PMS-subalgebra of X if and only if the fuzzy subsets μ_A and ν_A are fuzzy subalgebras of X.

Proof. Suppose $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X.

Claim: The fuzzy subsets μ_A and ν_A of X are fuzzy subalgebras of X. Clearly, μ_A is a fuzzy PMS-subalgebra of X directly follows from the fact that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X. Now for all $x, y \in X$, $\nu_A(x*y) = 1 - \nu_A(x*y) \geq 1 - \max\{\nu_A(x), \nu_A(y)\}$

$$= \min\{1 - \nu_A(x), 1 - \nu_A(y)\} \quad \text{(By Lemma 3.11(3))}$$

Therefore ν_A is a fuzzy PMS-subalgebra of X.

Conversely, Suppose μ_A and ν_A are fuzzy PMS-subalgebras of X. So, we need to show that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X. Since μ_A and ν_A are fuzzy PMS-subalgebras of X, we have that $\mu_A(x*y) \geq \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x*y) \geq \min\{\nu_A(x), \nu_A(y)\}$, for all $x, y \in X$. Now it suffices to show that
\[\nu_A(x \ast y) \leq \max\{\nu_A(x), \nu_A(y)\}\] for all \(x, y \in X\).

\[
1 - \nu_A(x \ast y) = \nu_A(x \ast y) \geq \min\{\nu_A(x), \nu_A(y)\} \\
= \min\{1 - \nu_A(x), 1 - \nu_A(y)\} \\
= 1 - \max\{\nu_A(x), \nu_A(y)\} \quad \text{(By Lemma 3.11(3))}
\]

\[\Rightarrow \nu_A(x \ast y) \leq \max\{\nu_A(x), \nu_A(y)\}, \text{ for all } x, y \in X.
\]

Hence \(A = (\mu_A, \nu_A)\) is an intuitionistic fuzzy PMS-subalgebra of \(X\). \(\Box\)

Corollary 3.13. If \(\mu_A\) is a fuzzy PMS-subalgebra of \(X\), then \(A = (\mu_A, \bar{\mu}_A)\) is an intuitionistic fuzzy PMS-subalgebra of \(X\).

Proof. Suppose \(\mu_A\) is a fuzzy PMS-subalgebra of \(X\). Then we want to show that \(A = (\mu_A, \bar{\mu}_A)\) is an intuitionistic fuzzy PMS-subalgebra of \(X\). Since \(\mu_A\) is a fuzzy PMS-subalgebra of \(X\), it follows that \(\mu_A(x \ast y) \geq \min\{\mu_A(x), \mu_A(y)\}\). Then it suffices to show that \(\bar{\mu}_A(x \ast y) \leq \max\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}\).

\[\bar{\mu}_A(x \ast y) = 1 - \mu_A(x \ast y) \leq 1 - \min\{\mu_A(x), \mu_A(y)\} \\
= \max\{1 - \mu_A(x), 1 - \mu_A(y)\} \\
= \max\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}
\]

\[\Rightarrow \bar{\mu}_A(x \ast y) \leq \max\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}
\]

Hence \(A = (\mu_A, \bar{\mu}_A)\) is an intuitionistic fuzzy PMS-subalgebra of \(X\). \(\Box\)

Corollary 3.14. If \(\bar{\nu}_A\) is a fuzzy PMS-subalgebra of \(X\), then \(A = (\bar{\nu}_A, \nu_A)\) is an intuitionistic fuzzy PMS-subalgebra of \(X\).

Proof. Similar to corollary 3.13 \(\Box\)

Theorem 3.15. An intuitionistic fuzzy subset \(A = (\mu_A, \nu_A)\) of \(X\) is an intuitionistic fuzzy PMS-subalgebra of \(X\) if and only if \(\Box A = (\mu_A, \bar{\mu}_A)\) and \(\Diamond A = (\bar{\nu}_A, \nu_A)\) are intuitionistic fuzzy PMS-subalgebras of \(X\).

Proof. Assume that an intuitionistic fuzzy subset \(A = (\mu_A, \nu_A)\) of \(X\) is an intuitionistic fuzzy PMS-subalgebra of \(X\), then \(\mu_A(x \ast y) \geq \min\{\mu_A(x), \mu_A(y)\}\) and \(\nu_A(x \ast y) \leq \max\{\nu_A(x), \nu_A(y)\}\).

Claim: \(\Box A = (\mu_A, \bar{\mu}_A)\) and \(\Diamond A = (\bar{\nu}_A, \nu_A)\) are intuitionistic fuzzy PMS-subalgebras of \(X\).

(i) To show that \(\Box A\) is an intuitionistic fuzzy PMS-subalgebra of \(X\), it suffices to show that \(\bar{\mu}_A(x \ast y) \leq \max\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}\), for all \(x, y \in X\). Let \(x, y \in X\), then

\[
\bar{\mu}_A(x \ast y) = 1 - \mu_A(x \ast y) \leq 1 - \min\{\mu_A(x), \mu_A(y)\} \\
= \max\{1 - \mu_A(x), 1 - \mu_A(y)\} \\
= \max\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}
\]

\[\Rightarrow \bar{\mu}_A(x \ast y) \leq \max\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}, \forall x, y \in X.
\]

Hence \(\Box A\) is an intuitionistic fuzzy PMS-subalgebra of \(X\).

(ii) To show that \(\Diamond A\) is an intuitionistic fuzzy PMS-subalgebra of \(X\), it suffices to show that \(\bar{\nu}_A(x \ast y) \geq \min\{\bar{\nu}_A(x), \bar{\nu}_A(y)\}\), for all \(x, y \in X\). Let \(x, y \in X\), then

\[
\bar{\nu}_A(x \ast y) = 1 - \nu_A(x \ast y) \geq 1 - \max\{\bar{\nu}_A(x), \bar{\nu}_A(y)\} \\
= \min\{1 - \nu_A(x), 1 - \nu_A(y)\} \\
= \min\{\bar{\nu}_A(x), \bar{\nu}_A(y)\}
\]

\[\Rightarrow \bar{\nu}_A(x \ast y) \geq \min\{\bar{\nu}_A(x), \bar{\nu}_A(y)\}, \forall x, y \in X.
\]
Hence \(\Diamond A\) is an intuitionistic fuzzy PMS-subalgebra of \(X\).

The proof of the converse of this theorem is trivial. \(\Box\)

4. Level Subsets of Intuitionistic Fuzzy PMS-subalgebras

In this section, the idea of level subsets of an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. Characterizations of level subsets of a fuzzy PMS-subalgebra of a PMS-algebra are given.

Theorem 4.1. If \(A = (\mu_A, \nu_A)\) be an intuitionistic fuzzy PMS-subalgebra of \(X\), then the sets \(X_{\mu_A} = \{x \in X | \mu_A(x) = \mu_A(0)\}\) and \(X_{\nu_A} = \{x \in X | \nu_A(x) = \nu_A(0)\}\) are PMS-subalgebra of \(X\).

Proof. Suppose \(A = (\mu_A, \nu_A)\) is an intuitionistic fuzzy PMS-subalgebra of \(X\) and let \(x, y \in X_{\mu_A}\). Then \(\mu_A(x) = \mu_A(0) = \mu_A(y)\). So, \(\mu_A(x * y) \geq \min\{\mu_A(x), \mu_A(y)\}\) \(= \min\{\mu_A(0), \mu_A(0)\} = \mu_A(0)\). \(\Rightarrow \mu_A(x * y) \geq \mu_A(0)\). By Lemma 3.3, we get that \(\mu_A(x * y) = \mu_A(0)\) which imply that \(x * y \in X_{\mu_A}\). Also, \(\nu_A(x) = \nu_A(0) = \nu_A(y)\) and so \(\nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\} = \max\{\nu_A(0), \nu_A(0)\} = \nu_A(0)\). \(\Rightarrow \nu_A(x * y) \leq \nu_A(0)\). By Lemma 3.3, we get that \(\nu_A(x * y) = \nu_A(0)\) which imply that \(x * y \in X_{\nu_A}\).

Hence, the sets \(X_{\mu_A}\) and \(X_{\nu_A}\) are PMS-subalgebras of \(X\). \(\Box\)

Theorem 4.2. Let \(S\) be a nonempty subset of a PMS-algebra \(X\) and \(A = (\mu_A, \nu_A)\) be an intuitionistic fuzzy set in \(X\) defined by

\[
\mu_A(x) = \begin{cases} p & \text{if } x \in S \\ q & \text{if } x \notin S \end{cases} \quad \text{and} \quad \nu_A(x) = \begin{cases} r & \text{if } x \in S \\ s & \text{if } x \notin S \end{cases}
\]

for all \(p, q, r, s \in [0, 1]\) with \(p \geq q, r \leq s\) and \(0 \leq p + r \leq 1, 0 \leq q + s \leq 1\). Then \(A\) is an intuitionistic fuzzy PMS-subalgebra of \(X\) if and only if \(S\) is a PMS-subalgebra of \(X\). Furthermore, in this situation, \(X_{\mu_A} = S = X_{\nu_A}\).

Proof. Let \(A\) be an intuitionistic fuzzy PMS-subalgebra of \(X\). Then we want to show that \(S\) is a PMS-subalgebra of \(X\). Let \(x, y \in X\) such that \(x, y \in S\).

Since \(A = (\mu_A, \nu_A)\) is an intuitionistic fuzzy PMS-subalgebra of \(X\), we have

\[
\mu_A(x * y) \geq \min\{\mu_A(x), \mu_A(y)\} = \min\{p, q\} \quad \text{and} \quad \nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\} = \max\{r, s\} = r.
\]

Hence \(x * y \in S\). So, \(S\) is a PMS-subalgebra of \(X\).

Conversely, suppose that \(S\) is a PMS-subalgebra of \(X\). We claim to show that \(A = (\mu_A, \nu_A)\) is an intuitionistic fuzzy PMS-subalgebra of \(X\).

Let \(x, y \in X\). Now consider the following cases:

- **Case (i).** If \(x, y \in S\), then \(x * y \in S\), since \(S\) is a PMS-subalgebra of \(X\). Thus, \(\mu_A(x * y) = p = \min\{\mu_A(x), \mu_A(y)\}\) and \(\nu_A(x * y) = r = \max\{\nu_A(x), \nu_A(y)\}\).

- **Case (ii).** If \(x \in S, y \notin S\), then \(\mu_A(x) = p, \mu_A(y) = q\) and \(\nu_A(x) = r, \nu_A(y) = s\). Thus, \(\mu_A(x * y) \geq q\) \(= \min\{p, q\} = \min\{\mu_A(x), \mu_A(y)\}\) implies \(\mu_A(x * y) \geq \min\{\mu_A(x), \mu_A(y)\}\) and \(\nu_A(x * y) \leq s = \max\{r, s\} = \max\{\nu_A(x), \nu_A(y)\}\) implies \(\nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\}\).

- **Case (iii).** If \(x \notin S, y \in S\), then interchanging the roles of \(x\) and \(y\) in Case (ii), yields similar results \(\mu_A(x * y) \geq \min\{\mu_A(x), \mu_A(y)\}\) and \(\nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\}\).
case (iv). If \(x, y \notin S \), then \(\mu_A(x) = q = \mu_A(y) \) and \(\nu_A(x) = s = \nu_A \), this implies that
\[
\mu_A(x \ast y) \geq q = \min \{ \mu_A(x), \mu_A(y) \} \quad \text{and} \quad \nu_A(x \ast y) \leq s = \max \{ \nu_A(x), \nu_A(y) \}
\]
Hence \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy PMS-subalgebra of \(X \).

Furthermore, we have
\[
X_{\mu_A} = \{ x \in X | \mu_A(x) = \mu_A(0) \} = \{ x \in X | \mu_A(x) = p \} = S \quad \text{and} \quad X_{\nu_A} = \{ x \in X | \nu_A(x) = \nu_A(0) \} = \{ x \in X | \nu_A(x) = r \} = S.
\]
Hence \(X_{\mu_A} = S = X_{\nu_A} \).

Definition 4.3. Let \(A = (\mu_A, \nu_A) \) be any intuitionistic fuzzy subset of a PMS-algebra \(X \) such that \(t, s \in [0, 1] \), then the set \(U(\mu_A, t) = \{ x \in X: \mu_A(x) \geq t \} \) is called an upper \(t \)-level set of an intuitionistic fuzzy subset \(A \) of \(X \) and the set \(L(\mu_A, s) = \{ x \in X: \nu_A(x) \leq s \} \) is called a lower \(s \)-level set of an intuitionistic fuzzy subset \(A \) of \(X \).

Theorem 4.4. An intuitionistic fuzzy subset \(A = (\mu_A, \nu_A) \) of a PMS-algebra \(X \) is an intuitionistic fuzzy PMS-subalgebra of \(X \) if and only if the nonempty level subsets \(U(\mu_A, t) \) and \(L(\nu_A, s) \) of \(A \) are PMS-subalgebras of \(X \) for all \(t, s \in [0, 1] \) with \(0 \leq t + s \leq 1 \).

Proof. Assume that \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra \(X \) such that \(U(\mu_A, t) \neq \emptyset \) and \(L(\nu_A, s) \neq \emptyset \). Now we claim that \(U(\mu_A, t) \) and \(L(\nu_A, s) \) are PMS-subalgebras of \(X \) for all \(t, s \in [0, 1] \) with \(0 \leq t + s \leq 1 \). Let \(x, y \in U(\mu_A, t) \), then we have \(\mu_A(x) \geq t \) and \(\mu_A(y) \geq t \). Thus \(\mu_A(x \ast y) \geq \min \{ \mu_A(x), \mu_A(y) \} \geq \min \{ t, t \} = t \)
\[
\Rightarrow \ x \ast y \in U(\mu_A, t)
\]
Hence \(U(\mu_A, t) \) is a PMS-subalgebra of \(X \).

Also, let \(x, y \in L(\nu_A, s) \), then \(\nu_A(x) \leq s \) and \(\nu_A(y) \leq s \)
\[
\therefore \nu_A(x \ast y) \leq \max \{ \nu_A(x), \nu_A(y) \} \leq \max \{ t, t \} = t \Rightarrow x \ast y \in L(\nu_A, s)
\]
Hence \(L(\nu_A, s) \) is a PMS-subalgebra of \(X \).

Conversely, Suppose that \(U(\mu_A, t) \) and \(L(\nu_A, s) \) are PMS-subalgebras of \(X \) for all \(t, s \in [0, 1] \) with \(0 \leq t + s \leq 1 \).

Claim: \(A \) is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra \(X \).

Let \(x, y \in X \) such that \(\mu_A(x) = t_1 \) and \(\mu_A(y) = t_2 \) for \(t_1, t_2 \in [0, 1] \). Then \(x \in U(\mu_A, t_1) \) and \(y \in U(\mu_A, t_2) \).

Choose \(t = \min \{ t_1, t_2 \} \), then \(t \leq t_1 \) and \(t \leq t_2 \)
\[
\Rightarrow U(\mu_A, t_1) \subseteq U(\mu_A, t) \quad \text{and} \quad U(\mu_A, t_2) \subseteq U(\mu_A, t).
\]
\[
\Rightarrow x, y \in U(\mu_A, t),
\]
Since \(U(\mu_A, t) \) is a PMS-Subalgebra of \(X \), it follows that \(x \ast y \in U(\mu_A, t) \).
Thus \(\mu_A(x \ast y) \geq t = \min \{ t_1, t_2 \} = \min \{ \mu_A(x), \mu_A(y) \} \).
Hence \(\mu_A(x \ast y) \geq \min \{ \mu_A(x), \mu_A(y) \} \) for all \(x, y \in X \).

And also, let \(x, y \in X \) such that \(\nu_A(x) = s_1 \) and \(\nu_A(y) = s_2 \) for \(s_1, s_2 \in [0, 1] \).

Then \(x \in L(\nu_A, s_1) \) and \(y \in L(\nu_A, s_2) \).

Choose \(s = \max \{ s_1, s_2 \} \), then \(s_1 \leq s \) and \(s_2 \leq s \),
\[
\Rightarrow L(\nu_A, s_1) \subseteq L(\nu_A, s) \quad \text{and} \quad L(\nu_A, s_2) \subseteq L(\nu_A, s).
\]
\[
\Rightarrow x, y \in L(\nu_A, s),
\]
Since \(L(\nu_A, s) \) is a PMS-subalgebra of \(X \), it follows that \(x \ast y \in L(\nu_A, s) \).
Thus \(\nu_A(x \ast y) \leq s = \max \{ s_1, s_2 \} = \max \{ \nu_A(x), \nu_A(y) \} \).
Hence \(\nu_A(x \ast y) \leq \max \{ \nu_A(x), \nu_A(y) \} \) for all \(x, y \in X \).

Hence \(A \) is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra \(X \).
Remarque 4.5. Les sub-algebres PMS des $U(\mu_A, t)$ et $L(\nu_A, s)$ de X pour tout $t, s \in [0,1]$ obtenues dans le théorème précédent sont appelées des sous-algebres PMS de X.

Corollaire 4.6. Un ensemble flou intuitionniste $A = (\mu_A, \nu_A)$ d’une PMS-algèbre X est un ensemble flou PMS-sous-algèbre de X si et seulement si les sous-ensembles flous $U(\mu_A, t)$ et $L(\nu_A, s)$ de A sont des sous-algebres PMS de X pour tout $t \in Im(\mu_A)$ et $s \in Im(\nu_A)$ avec $0 \leq t + s \leq 1$.

Theorem 4.7. Si S est un ensemble de X et $A = (\mu_A, \nu_A)$ est un ensemble flou intuitionniste dans X défini par

$$\mu_A(x) = \begin{cases} t & \text{si } x \in S \\ 0 & \text{si } x \notin S \end{cases} \quad \text{et} \quad \nu_A(x) = \begin{cases} s & \text{si } x \in S \\ 1 & \text{si } x \notin S \end{cases}$$

pour tout $t, s \in [0,1]$ tel que $0 \leq t + s \leq 1$. Si $A = (\mu_A, \nu_A)$ est un ensemble flou PMS-sous-algèbre de X, alors S est un ensemble flou PMS-sous-algèbre de X.

démonstration. Soit $A = (\mu_A, \nu_A)$ être un ensemble flou PMS-sous-algèbre de X. On montrera que S est un ensemble flou PMS-sous-algèbre de X. Soit $x, y \in S$, alors $\mu_A(x) = t = \mu_A(y)$ et $\nu_A(x) = s = \nu_A(y)$. Donc, $\mu_A(x * y) = \min\{\mu_A(x), \mu_A(y)\} = \min\{t, t\} = t$ et $\nu_A(x * y) = \max\{\mu_A(x), \nu_A(y)\} = \max\{s, s\} = s$ qui implique que $x * y \in S$. Par conséquent, S est un ensemble flou PMS-sous-algèbre de X. En outre, par le théorème 4.4, $U(\mu_A, t)$ est un ensemble flou PMS-sous-algèbre de X, et

$$U(\mu_A, t) = \{x \in X : \mu_A(x) \geq t\} = S = \{x \in X : \nu_A(x) \leq s\}.$$

Ainsi, S est un ensemble flou PMS-sous-algèbre de X correspondant à l’ensemble flou PMS-sous-algèbre $A = (\mu_A, \nu_A)$ de X.

démonstration. Soit S un ensemble flou PMS-sous-algèbre de X et $A = (\mu_A, \nu_A)$ soit un ensemble flou intuitionniste dans X défini par

$$\mu_A(x) = \begin{cases} t & \text{si } x \in S \\ 0 & \text{si } x \notin S \end{cases} \quad \text{et} \quad \nu_A(x) = \begin{cases} s & \text{si } x \in S \\ 1 & \text{si } x \notin S \end{cases}$$

pour tout $t, s \in [0,1]$ tels que $0 \leq t + s \leq 1$.

Clairement, $U(\mu_A, t) = \{x \in X : \mu_A(x) \geq t\} = S$. Soit $x, y \in X$. Pour montrer que $A = (\mu_A, \nu_A)$ est un ensemble flou PMS-sous-algèbre de X, nous considérons les cas suivants:

- **cas(i)**. Si $x, y \in S$, alors $x * y \in S$. Puisque S est un ensemble flou PMS-sous-algèbre de X, $\mu_A(x) = \mu_A(y) = \mu_A(x * y) = t$ et $\nu_A(x) = \nu_A(y) = \nu_A(x * y) = s$. Par conséquent, $\mu_A(x * y) = \min\{\mu_A(x), \mu_A(y)\}$ et $\nu_A(x * y) = \max\{\nu_A(x), \nu_A(y)\}$

- **cas(ii)**. Si $x \in S, y \notin S$, alors nous avons $\mu_A(x) = t, \mu_A(y) = 0$ et $\nu_A(x) = s, \nu_A(y) = 1$. Par conséquent, $\mu_A(x * y) \geq 0 = \min\{t, 0\} = \min\{\mu_A(x), \mu_A(y)\}$ et $\nu_A(x * y) \leq 1 = \max\{s, 1\} = \max\{\nu_A(x), \nu_A(y)\}$ implique $\nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\}$.

- **cas(iii)**. Si $x \notin S, y \in S$, alors interchanger le rôle de x et y dans le cas (ii), donne des résultats similaires $\mu_A(x * y) \geq \min\{\mu_A(x), \mu_A(y)\}$ et $\nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\}$.

- **cas(iv)**. Si $x, y \notin S$ alors $\mu_A(x) = 0 = \mu_A(y)$ et $\nu_A(x) = 1 = \nu_A(y)$. Par conséquent, $\mu_A(x * y) \geq 0 = \min\{\mu_A(x), \mu_A(y)\}$ et $\nu_A(x * y) \leq 1 = \max\{\nu_A(x), \nu_A(y)\}$.
So, in all cases we get $\mu_A(x*y) \geq \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x*y) \leq \max\{\nu_A(x), \nu_A(y)\}$, for all $x, y \in X$.

Thus, A is an intuitionistic fuzzy PMS-subalgebra of X. \hfill \Box

We can also prove the following theorem as a generalization of theorem 4.8.

Theorem 4.9. Let $\{S_i\}$ be any family of a PMS-subalgebra of a PMS-algebra X such that $S_0 \subset S_1 \subset S_2 \subset \ldots \subset S_n = X$, then there exists an intuitionistic fuzzy PMS-subalgebra $A = (\mu_A, \nu_A)$ of X whose level PMS-subalgebras are exactly the PMS-subalgebras $\{S_i\}$.

Proof. Suppose $t_0 > t_1 > t_2 > \ldots > t_n$ and $s_0 < s_1 < s_2 \ldots < s_n$ where each $t_i, s_i \in [0, 1]$ with $0 \leq t_i + s_i \leq 1$. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set defined by

$$
\mu_A(x) = \begin{cases}
t_0 & \text{if } x \in S_0 \\
t_i & \text{if } x \in S_i - S_{i-1}, 0 < i \leq n.
\end{cases}
\quad \text{and} \quad
\nu_A(x) = \begin{cases}
s_0 & \text{if } x \in S_0 \\
s_i & \text{if } x \in S_i - S_{i-1}, 0 < i \leq n.
\end{cases}
$$

Now, We claim that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X and $U(\mu_A, t_i) = S_i = L(\nu_A, s_i)$ for $0 \leq i \leq n$.

Let $x, y \in X$ Then, we consider the following two cases

Case (i): Let $x, y \in S_i - S_{i-1}$. Therefore by the definition of $A = (\mu_A, \nu_A)$, we have $\mu_A(x) = t_i = \mu_A(y)$ and $\nu_A(x) = s_i = \nu_A(y)$. Since S_i is a PMS-subalgebra of X, it follows that $x*y \in S_i$, and so either $x*y \in S_i - S_{i-1}$ or $x*y \in S_{i-1}$ or $x*y \in S_{i-1} - S_{i-2}$.

$\Rightarrow \mu_A(x) = t_i$ or $\mu_A(x) = t_{i-1} > t_i$ and $\nu_A(x) = s_i$ or $\nu_A(x) = s_{i-1} > s_i$.

In any case we conclude that $\mu_A(x*y) \geq t_i = \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x*y) \leq s_i = \max\{\nu_A(x), \nu_A(y)\}$.

Case (ii): For $i > j$, $t_j > t_i$, $s_j < s_i$ and $S_j \subseteq S_i$. Let $x \in S_i - S_{i-1}$ and $y \in S_j - S_{j-1}$. Then, $\mu_A(x) = t_i, \mu_A(y) = t_j > t_i, \nu_A(x) = s_i$ and $\nu_A(y) = s_j < s_i$. Then $x*y \in S_i$ since S_i is a PMS-subalgebra of X and $S_j \subseteq S_i$.

Hence $\mu_A(x*y) \geq t_i = \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x*y) \leq s_i = \max\{\nu_A(x), \nu_A(y)\}$ by case (i). Thus $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X.

Also, from the definition of $A = (\mu_A, \nu_A)$, it follows that $Im(\mu_A) = \{t_0, t_1, \ldots, t_n\}$ and $Im(\nu_A) = \{s_0, s_1, \ldots, s_n\}$. So, $U(\mu_A, t_i)$ and $L(\nu_A, s_i)$ are the level subalgebras of A for $0 \leq i \leq n$, and form the chains,

$U(\mu_A, t_0) \subset \ldots \subset U(\mu_A, t_n) = X$ and $L(\nu_A, s_0) \subset \ldots \subset L(\nu_A, s_n) = X$.

Now, $U(\mu_A, t_0) = \{x \in X : \mu_A(x) \geq t_0\} = S_0 = \{x \in X : \nu_A(x) \leq s_0\} = L(\nu_A, s_0)$. Finally, we prove that $U(\mu_A, t_i) = S_i = L(\nu_A, s_i)$ for $0 < i \leq n$.

Now let $x \in S_i$, then $\mu_A(x) \geq t_i$ and $\nu_A(x) \leq s_i$. This implies $x \in (\mu_A, t_i)$ and $x \in L(\nu_A, s_i)$. Hence $S_i \subseteq (\mu_A, t_i)$ and $S_i \subseteq (\nu_A, s_i)$. If $x \in U(\mu_A, t_i)$ and $x \in L(\nu_A, s_i)$, then $\mu_A(x) \geq t_i$ and $\nu_A(x) \leq s_i$ which implies that $x \notin S_j$ for $j > i$. For otherwise, if $x \in S_j$, then $\mu_A(x) \geq t_j$ and $\nu_A(x) \leq s_j$, which implies $t_i > \mu_A(x) \geq t_j$ and $s_i < \nu_A(x) \leq s_j$. This contradicts the assumption that $x \in U(\mu_A, t_i)$ and $x \in L(\nu_A, s_i)$. Hence $\mu_A(x) \notin \{t_0, t_1, \ldots, t_n\}$ and $\nu_A(x) \notin \{s_0, s_1, \ldots, s_n\}$. So $x \in S_k$ for some $k \leq i$. As $S_k \subseteq S_i$, it follows that $x \in S_i$. Hence $U(\mu_A, t_i) \subseteq S_i$ and $L(\nu_A, s_i) \subseteq S_i$. Therefore $U(\mu_A, t_i) = S_i = L(\nu_A, s_i)$ for $0 < i \leq n$. \hfill \Box

Note that the number of PMS-subalgebras of a finite PMS-algebra X is finite whereas the number of level PMS-subalgebras of an intuitionistic fuzzy PMS-subalgebra A appears to be infinite. However, every level PMS-subalgebra of X is a PMS-subalgebra.
of X, not all of these PMS-subalgebras are unique. The next theorem illustrates this situation.

Theorem 4.10. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X, then

(i). The upper level PMS-subalgebras $U(\mu_A, t_1)$ and $U(\mu_A, t_2)$, (with $t_1 < t_2$) of an intuitionistic fuzzy PMS-subalgebra A are equal if and only if there is no $x \in X$ such that $t_1 \leq \mu_A(x) < t_2$.

(ii). The lower level PMS-subalgebras $L(\nu_A, s_1)$ and $L(\nu_A, s_2)$, (with $s_1 > s_2$) of an intuitionistic fuzzy PMS-subalgebra A are equal if and only if there is no $x \in X$ such that $s_1 \geq \nu_A(x) > s_2$.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X. Since the proofs for both (i) and (ii) are similar, here we prove for only (ii).

Suppose that $L(\nu_A, s_1) = L(\nu_A, s_2)$, for $s_1 > s_2$. Then we claim that there is no $x \in X$ such that $s_1 \geq \nu_A(x) > s_2$.

Assume that there exists $x \in X$ such that $s_1 \geq \nu_A(x) < s_2$.

$$\Rightarrow x \in L(\nu_A, s_1) \text{ but } x \notin L(\nu_A, s_2)$$

$$\Rightarrow L(\mu_A, s_2) \text{ is a proper subset of } L(\nu_A, s_1).$$

This contradicts to the assumption that $L(\nu_A, s_1) = U(\nu_A, s_2)$.

Hence there is no $x \in X$ such that $s_1 \geq \nu_A(x) > s_2$.

Conversely, suppose that there is no $x \in X$ such that $s_1 \geq \nu_A(x) > s_2$.

Then we prove that $L(\nu_A, s_1) = L(\nu_A, s_2)$.

Since $s_1 > s_2$, we get $L(\nu_A, s_2) \subseteq L(\nu_A, s_1)$ (1)

Now, $x \in L(\nu_A, s_1) \Rightarrow \nu_A(x) \leq s_1$.

$$\Rightarrow \nu_A(x) \leq s_2. \quad (\text{Since } \nu_A(x) \text{ does not lie between } s_1 \text{ and } s_2).$$

$$\Rightarrow x \in L(\nu_A, s_2).$$

Hence $L(\nu_A, s_1) \subseteq L(\nu_A, s_2)$ (2)

From (1) and (2) we get $L(\nu_A, s_1) = L(\nu_A, s_2)$. \qed

Remark 4.11. As the consequence of Theorem 4.10, the level subalgebras of an intuitionistic fuzzy PMS-algebra $A = (\mu_A, \nu_A)$ of a finite PMS-algebra X form a chain,

$$U(\mu_A, t_0) \subset U(\mu_A, t_1) \subset ... \subset U(\mu_A, t_n) = X \text{ and } L(\nu_A, s_0) \subset L(\nu_A, s_1) \subset ... \subset L(\nu_A, s_n) = X,$$

where $t_0 > t_1 > ... > t_n$ and $s_0 < s_1 < ... < s_n$.

Corollary 4.12. Let X be a finite PMS-algebra and $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X.

(i). If $\text{Im}(\mu_A) = \{t_1, \ldots, t_n\}$, then the family of PMS-subalgebras $\{U(\mu_A, t_i)|1 \leq i \leq n\}$, constitutes all the upper level PMS-subalgebras of A in X.

(ii). If $\text{Im}(\nu_A) = \{s_1, \ldots, s_n\}$, then the family of PMS-subalgebras $\{L(\nu_A, s_i)|1 \leq i \leq n\}$, constitutes all the lower level PMS-subalgebras of A in X.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X such that $\text{Im}(\mu_A) = \{t_1, t_2, \ldots, t_n\}$ with $t_1 < t_2 < \ldots < t_n$ and $\text{Im}(\nu_A) = \{s_1, s_2, \ldots, s_n\}$ with $s_1 > s_2 > \ldots > s_n$.

(i). Let $t \in [0, 1]$ and $t \notin \text{Im}(\mu_A)$. Now, we can consider the following cases.

case (1). If $t \leq t_1$, then $U(\mu_A, t_1) = X = U(\mu_A, t)$.

case (2). If $t > t_n$, then $U(\mu_A, t) = \{x \in X|\mu_A(x) \geq t\} = \{x \in X|\mu_A(x) > t\} = \emptyset$

case (3). If $t_{i-1} < t < t_i$, then $U(\mu_A, t) = U(\mu_A, t_i)$ by theorem 4.10(i), since
there is no $x \in X$ such that $t \leq \mu_A(x) < t_i$. Thus for any $t \in [0,1]$, the level PMS-subalgebra is one of $\{U(\mu_A, t_i) | i = 1, 2, \ldots, n\}$.

(ii). proof of (ii) is similar to (i) \hfill \Box

Corollary 4.13. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X with finite images.

(i). If $U(\mu_A, t_i) = U(\mu_A, t_j)$ for any $t_i, t_j \in Im(\mu_A)$, then $t_i = t_j$.

(ii). If $L(\nu_A, s_i) = L(\nu_A, s_j)$ for any $s_i, s_j \in Im(\nu_A)$, then $s_i = s_j$.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X with finite images. Here we only prove (ii). the prove of (i) can be done similarly. Assume $L(\nu_A, s_i) = L(\nu_A, t_j)$ for $s_i, s_j \in Im(\nu_A)$. So to show that $s_i = s_j$ assume on contrary, that is, $s_i \neq s_j$. Without loss of generality assume $s_i > s_j$.

Let $x \in L(\nu_A, s_j)$, then

\[\nu_A(x) \leq s_j < s_i. \]

\[\Rightarrow \nu_A(x) < s_i \]

\[\Rightarrow x \in L(\nu_A, s_i) \]

Let $x \in X$ such that $s_i > \nu_A(x) > s_j$. Then $x \in L(\nu_A, s_i)$ but $x \notin L(\nu_A, s_j)$

\[\Rightarrow L(\nu_A, s_j) \subseteq L(\nu_A, s_i) \]

\[\Rightarrow L(\nu_A, t_i) \neq L(\nu_A, t_j) \] which contradics the hypothesis that

\[L(\nu_A, s_i) = L(\nu_A, s_j). \]

Therefore, $s_i = s_j$. \hfill \Box

5. Conclusion

In this paper, we introduced the notion of intuitionistic fuzzy PMS-subalgebras of PMS-algebras and some results are obtained. The idea of level subsets of an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. The relation between an intuitionistic fuzzy sets in a PMS-algebra and their level sets is discussed and some interesting results are obtained. The concepts can further be extended to intuitionistic fuzzy ideals of a PMS-algebra for new results in our future work.

References

Beza Lamesgin Derseh
Department of Mathematics, Debre Markos University, Debre Markos, Ethiopia
E-mail: dbezalem@gmail.com

Berhanu Assaye Alaba
Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia
E-mail: birhanu.assaye290113@gmail.com

Yohannes Gedamu Wondifraw
Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia
E-mail: yohannesg27@gmail.com