INTUITIONISTIC FUZZY PMS-SUBALGEBRA OF A PMS-ALGEBRA

Beza Lamesgin Derseh^{*}, Berhanu Assaye Alaba, and Yohannes Gedamu Wondifraw

ABSTRACT. In this paper, we introduce the notion of intuitionistic fuzzy PMSsubalgebra of a PMS-algebra. The idea of level subsets of an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. The relation between intuitionistic fuzzy sets and their level sets in a PMS-algebra is examined, and some interesting results are obtained.

1. Introduction

In 1966, Y. Imai and K. Iseki [7] and in 1980, Iseki [8] introduced the two classes of abstract algebras, BCK-algebra and BCI-algebra respectively. In 2016, Sithar Selvam and Nagalakshmi [12] introduced a new algebraic structure called PMS-algebra. Zadeh [15] first introduced the concept of a fuzzy set in 1965. After the invention of fuzzy sets, Rosenfeld [10] pioneered the study of fuzzy algebraic structures. In 2016, Sithar Selvam and Nagalakshmi [11] fuzzified PMS-subalgebra and PMS-ideal. K.T. Atanassov [2, 4] developed the concept of intuitionistic fuzzy set as a generalization of Zadeh's fuzzy set. Since then, many researches have been done by mathematicians to extend fuzzy mathematical concepts to intuitionistic fuzzy concepts.

A. Zarandi and A. Borumand Saied [16] studied the intuitionistic fuzzy ideal of BGalgebras in 2005. Mohamed Akram [1] discussed the Bifuzzy structure in K-algebras. Senapati et al. [13,14] investigated intuitionistic fuzzification of subalgebras and ideals of BG-algebras. In 2010, M. Chandramouleeswaran and P. Muralikrishna discussed intuitionistic L-Fuzzy subalgebras of BG and BF algebras. Intuitionistic fuzzy structures of B-algebras were studied by Y. H. Kim and T. E. Jeong [9].

In this paper, we introduced the notion of intuitionistic fuzzy PMS-subalgebras of PMS-algebras and investigate some of their properties. The idea of level subsets of an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. The relation between intuitionistic fuzzy sets and their level sets in a PMS-algebra is examined, and some interesting results are obtained.

Received July 10, 2021. Revised August 25, 2021. Accepted August 28, 2021.

²⁰¹⁰ Mathematics Subject Classification: 08A72, 06F99, 03B20.

Key words and phrases: PMS-algebra, PMS-subalgebra, Intuitionistic fuzzy PMS-subalgebra, Intuitionistic fuzzy PMS-level subalgebra.

^{*} Corresponding author.

⁽C) The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

2. Preliminaries

In this section, we recall some basic definitions and results that are used in the study of this paper

DEFINITION 2.1. [12] A nonempty set X with a constant 0 and a binary operation '*' is called PMS-algebra if it satisfies the following axioms.

- 1. 0 * x = x
- 2. (y * x) * (z * x) = z * y, for all $x, y, z \in X$.

In X, we define a binary relation \leq by $x \leq y$ if and only if x * y = 0.

DEFINITION 2.2. [12] Let S be a nonempty subset of a PMS-algebra X, then S is called a PMS-sub algebra of X if $x * y \in S$, for all $x, y \in S$.

EXAMPLE 2.3. [12] Let Z be the set of all integers, and let * be a binary relation on Z defined by x * y = y - x, for all $x, y \in Z$, where '-' the usual subtraction of integers. Then (Z, *, 0) is a PMS-algebra since

1. 0 * x = x - 0 = x

2. (y * x) * (z * x) = (z * x) - (y * x) = (x - z) - (x - y) = y - z = z * y.

Clearly, the set E of all even integers is a PMS-subalgebra of a PMS-algebra Z, since $x * y = y - x \in E$ for all $x, y \in E$.

PROPOSITION 2.4. [12] In any PMS-algebra (X, *, 0) the following properties hold for all $x, y, z \in X$.

1. x * x = 02. (y * x) * x = y3. x * (y * x) = y * 04. (y * x) * z = (z * x) * y5. (x * y) * 0 = y * x = (0 * y) * (0 * x)

DEFINITION 2.5. [15] Let X be a nonempty set. A fuzzy subset A of the set X is defined as $A = \{\langle x, \mu_A(x) \rangle | x \in X\}$ where the mapping $\mu_A : X \to [0, 1]$ defines the degree of membership

DEFINITION 2.6. [11] A fuzzy set A in a PMS-algebra X is called fuzzy PMSsubalgebra of X if $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}$ for all $x, y \in X$

DEFINITION 2.7. [2, 4] An intuitionistic fuzzy set (IFS) A in a nonempty set X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ define the degree of membership and the degree of non membership, respectively, satisfying the condition $0 \le \mu_A(x) + \nu_A(x) \le 1$, for all $x \in X$.

REMARK 2.8. Ordinary fuzzy sets over X may be viewed as special intuitionistic fuzzy sets with the non membership function $\nu_A(x) = 1 - \mu_A(x)$. So each Ordinary fuzzy set may be written as $\{\langle x, \mu_A(x), 1 - \mu_A(x) \rangle | x \in X\}$ to define an intuitionistic fuzzy set. For the sake of simplicity we write $A = (\mu_A, \nu_A)$ for an intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}$.

DEFINITION 2.9. [2–4] Let A and B be two intuitionistic fuzzy subsets of the set X, where $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$, then

1.
$$A \cap B = \{ \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle | x \in X \}$$

2. $A \cup B = \{ \langle x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x)) \rangle | x \in X \}$
3. $\overline{A} = \{ \langle x, \nu_A(x), \mu_A(x) \rangle | x \in X \}$
4. $\Box A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle | x \in X \}$
5. $\Diamond A = \{ \langle x, 1 - \nu_A(x), \nu_A(x) \rangle | x \in X \}$

3. Intuitionistic Fuzzy PMS-subalgebra

In this section we introduce the notion of intuitionistic fuzzy PMS-subalgebra and investigated some of its properties. Throughout this and the next section X denotes a PMS-algebra, unless otherwise specified.

DEFINITION 3.1. An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a PMS-algebra X is called an intuitionistic fuzzy PMS-subalgebra of X if

1. $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}$ and 2. $\nu_A(x * y) \le \max\{\nu_A(x), \nu_A(y)\}$ for all $x, y \in X$

EXAMPLE 3.2. Let $X = \{01, 1, 2, 3\}$ be a set with the following table.

*	0	1	2	3
0	0	1	2	3
1	2	0	1	2
2	1	2	0	1
3	3	1	2	0

Then (X, *, 0) is a PMS-algebra and $S = \{0, 1, 2\}$ is a PMS-subalgebra X. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in X defined by

$$\mu_A(x) = \begin{cases} 1 & \text{if } x = 0\\ 0.5 & \text{if } x = 1, 2\\ 0 & \text{if } x = 3 \end{cases} \text{ and } \nu_A(x) = \begin{cases} 0 & \text{if } x = 0\\ 0.4 & \text{if } x = 1, 2\\ 1 & \text{if } x = 3 \end{cases}$$

For intuitionistic fuzzy set A in a PMS-algebra X with membership values $\mu_A(x)$ and non membership values $\nu_A(x)$ as defined above, definition 3.1 is satisfied. Therefore $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS- subalgebra of the PMS-algebra X.

LEMMA 3.3. If $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X, then $\mu_A(0) \ge \mu_A(x)$ and $\nu_A(0) \le \nu_A(x)$ for all $x \in X$

Proof. Suppose $A = (\mu_A, \nu_A)$ is an 11 intuitionistic fuzzy PMS-subalgebra of X. Since x * x = 0 for every $x \in X$ by proposition 2.1(1), we have $\mu_A(0) = \mu_A(x * x) \ge \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$ and $\nu_A(0) = \nu_A(x * x) \le \max\{\nu_A(x), \nu_A(x)\} = \nu_A(x)$ Hence $\mu_A(0) \ge \mu_A(x)$ and $\nu_A(0) \le \nu_A(x)$ for all $x \in X$

LEMMA 3.4. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X, if $x * y \leq z$, then $\mu_A(x) \geq \min\{1\mu_A(y), \mu_A(z)\}$ and $\nu_A(x) \leq \max\{\nu_A(y), \nu_A(z)\}$.

Proof. Suppose $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X. Let $x, y, z \in X$ such that $x * y \leq z$. Then by the binary relation \leq defined in X, we have

. .

$$(x * y) * z = 0. \text{ Thus by definition 2.1 and proposition 2.4 (4), we have} \\ \mu_A(x) = \mu_A(0 * x) = \mu_A(((x * y) * z) * x) \\ = \mu_A(((x * y) * x) * x) \\ = \mu_A((x * x) * (z * y)) \\ = \mu_A(0 * (z * y)) \\ = \mu_A(2 * y) \ge \min\{\mu_A(z), \mu_A(y)\} \\ \text{Hence } \mu_A(x) \ge \min\{\mu_A(z), \mu_A(y)\} \\ \text{Similarly, } \nu_A(x) \le \max\{\nu_A(z), \nu_A(y)\}$$

THEOREM 3.5. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra X and let $x \in X$, then $\mu_A(x * y) = \mu_A(y)$ and $\nu_A(x * y) = \nu_A(y)$ for each $y \in X$ if and only if $\mu_A(x) = \mu_A(0)$ and $\nu_A(x) = \nu_A(0)$, where 0 is a constant in X.

Proof. Suppose $\mu_A(x * y) = \mu_A(y)$ and $\nu_A(x * y) = \nu_A(y)$ for each $y \in X$. Then we need to show that $\mu_A(x) = \mu_A(0)$ and $\nu_A(x) = \nu_A(0)$, where 0 is a constant in X. By lemma 3.3, $\mu_A(0) \ge \mu_A(x)$ and $\nu_A(0) \le \nu_A(x)$ for each $x \in X$. By proposition 2.4 (2) (x * 0) * 0 = x. Then $\mu_A(x) = \mu_A((x * 0) * 0) \ge \min\{\mu_A(x * 0), \mu_A(0)\} = \mu_A(0)$. Also, $\nu_A(x) = \nu_A((x*0)*0) \le \max\{\nu_A(x*0), \nu_A(0)\} = \nu_A(0).$ Hence $\mu_A(x) \ge \mu_A(0)$ and $\nu_A(x) \le \nu_A(0)$. Therefore $\mu_A(x) = \mu_A(0)$ and $\nu_A(x) = \nu_A(0)$ Conversely, Suppose $\mu_A(x) = \mu_A(0)$ and $\nu_A(x) = \nu_A(0)$. Then we need to prove that $\mu_A(x * y) = \mu_A(y)$ and $\nu_A(x * y) = \nu_A(y)$, for each $y \in X$. By lemma 3.3 $\mu_A(x) \ge \mu_A(y)$ and $\nu_A(x) \le \nu_A(y)$ for each $y \in X$. Since A is an intuitionistic fuzzy PMS-subalgebra of X, Then $\mu_A(x * y) \geq \min\{\mu_A(x), \mu_A(y)\} =$ $\mu_A(y)$ and $\nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\} = \nu_A(y)$. Thus $\mu_A(x * y) \geq \mu_A(y)$ and $\nu_A(x * y) \leq \nu_A(y)$ for each $y \in X$. But, using Proposition 2.4 (2) and 2.4 (5) it follows that $\mu_A(y) = \mu_A((y * x) * x) \ge \min\{\mu_A(y * x), \mu_A(x)\}$ $= min\{\mu_A((x * y) * 0), \mu_A(x)\}$ $> min\{min\{\mu_A(x * y), \mu_A(0)\}, \mu_A(x)\}$ $= min\{\mu_A(x * y), \mu_A(x)\} = \mu_A(x * y)$ and $\nu_{A}(y) = \nu_{A}((y * x) * x) \le \max\{\nu_{A}(y * x), \nu_{A}(x)\}\$ $= max\{\nu_A((x * y) * 0), \nu_A(x)\}\$ $< max\{max\{\nu_A(x * y), \nu_A(0)\}, \nu_A(x)\}$ $= max\{\nu_A(x * y), \nu_A(x)\} = \nu_A(x * y)$ Hence $\mu_A(x * y) = \mu_A(y)$ and $\nu_A(x * y) = \nu_A(y)$ for each $y \in X$.

THEOREM 3.6. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra X. If $\mu_A(x * y) = \mu_A(0)$ and $\nu_A(x * y) = \nu_A(0)$ for all $x, y \in X$, then $\mu_A(x) = \mu_A(y)$ and $\nu_A(x) = \nu_A(y)$

Proof. Let
$$x, y \in X$$
 such that $\mu_A(x * y) = \mu_A(0)$ and $\nu_A(x * y) = \nu_A(0)$.
Claim $\mu_A(x) = \mu_A(y)$ and $\nu_A(x) = \nu_A(y)$
Now, $\mu_A(x) = \mu_A((y * y) * x)$
 $= \mu_A((x * y) * y)$
 $\geq min\{\mu_A(x * y), \mu_A(y)\}$
 $= min\{\mu_A(0), \mu_A(y)\} = \mu_A(y)$
Conversely, $\mu_A(y) = \mu_A((x * x) * y)$
 $= \mu_A((y * x) * x)$
 $\geq min\{\mu_A(y * x), \mu_A(y)\}$
 $= min\{\mu_A((x * y) * 0), \mu_A(y)\}$
 $\geq min\{min\{\mu_A(x * y), \mu_A(0)\}, \mu_A(x)\}$
 $= min\{\mu_A(0), \mu_A(x)\} = \mu_A(x)$
Thus $\mu_A(x) = \mu_A(y)$
By similar argument we have $\nu_A(x) = \nu_A(y)$

THEOREM 3.7. The intersection of any two intuitionistic fuzzy PMS-sub algebras of X is also an intuitionistic fuzzy PMS-subalgebra of X.

Proof. Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be any two intuitionistic fuzzy PMS-subalgebras of a PMS-algebra X.

Claim: $A \cap B$ is an intuitionistic fuzzy PMS-subalgebra of X. Then for $x, y \in X$, we have

$$\mu_{A\cap B}(x*y) = \min\{\mu_A(x*y), \mu_B(x*y)\} \\ \ge \min\{\min\{\mu_A(x), \mu_A(y)\}, \min\{\mu_B(x), \mu_B(y)\}\} \\ = \min\{\min\{\mu_A(x), \mu_B(x)\}, \min\{\mu_A(y), \mu_B(y)\}\} \\ = \min\{\mu_{A\cap B}(x), \mu_{A\cap B}(y)\}$$

and

$$\nu_{A\cap B}(x*y) = max\{\nu_A(x*y), \nu_B(x*y)\}$$

$$\leq max\{max\{\nu_A(x), \nu_A(y)\}, max\{\nu_B(x), \nu_B(y)\}\}$$

$$= max\{max\{\nu_A(x), \nu_B(x)\}, max\{\nu_A(y), \nu_B(y)\}\}$$

$$= max\{\nu_{A\cap B}(x), \nu_{A\cap B}(y)\}$$
Hence $A \cap B$ is an intuitionistic fuzzy PMS-subalgebra of X

The above theorem proves that the intersection of any two intuitionistic fuzzy PMSsubalgebras of X is again an intuitionistic fuzzy subalgebra of X. It can also be generalized to any family of intuitionistic fuzzy PMS-subalgebra of X as follows:

COROLLARY 3.8. If $\{A_i : i \in I\}$ be a family of intuitionistic fuzzy PMS-subalgebra of X, then $\cap_{i \in I}$ is also an intuitionistic fuzzy PMS-subalgebra of X, where $\cap_{i \in I} \mu_{A_i}(x)$ $= \inf_{i \in I} \mu_{A_i}(x)$ and $\cap_{i \in I} \nu_{A_i}(x) = \sup_{i \in I} \mu_{A_i}(x)$

REMARK 3.9. The union of any two intutionistic fuzzy PMS-subalgebras of a PMSalgebra X is not necessarily an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra X.

567

EXAMPLE 3.10. Let X={0,1,2,3} be a set with the table as in example 3.2 and $A = (\mu_A, \mu_A)$ is an intuitionistic fuzzy set in X as defined in example 3.2. Let $B = (\mu_B, \nu_B)$ be an intuitionistic fuzzy set in X defined by

$$\mu_B(x) = \begin{cases} 1 & \text{if } x = 0\\ 0.6 & \text{if } x = 1, 3\\ 0 & \text{if } x = 2 \end{cases} \text{ and } \nu_B(x) = \begin{cases} 0 & \text{if } x = 0\\ 0.2 & \text{if } x = 1, 3\\ 1 & \text{if } x = 2 \end{cases}$$

Now, $\mu_{A\cup B}(1*0) = \mu_{A\cup B}(2) = max\{\mu_A(2), \mu_B(2)\} = max\{0.5, 0\} = 0.5$ (i) $min\{\mu_{A\cup B}(1), \mu_{A\cup B}(0)\} = min\{max\{\mu_A(1), \mu_B(1)\}, max\{\mu_A(0), \mu_B(0)\}\}$ $= min\{max\{0.5, 0.6\}, max\{1, 1\}\}$ $= min\{0.6, 1\} = 0.6$ (ii)

also,
$$\nu_{A\cup B}(1*0) = \nu_{A\cup B}(2) = \min\{\nu_A(2), \nu_B(2)\} = \min\{0.4, 1\} = 0.4$$
 (iii)
 $\max\{\nu_{A\cup B}(1), \nu_{A\cup B}(0)\} = \max\{\min\{\mu_A(1), \nu_B(1)\}, \min\{\nu_A(0), \nu_B(0)\}\}$
 $= \max\{\min\{0.4, 0.2\}, \min\{0, 0\}\}$
 $= \max\{0.2, 0\} = 0.2$ (iv)

and

From (i) and (ii) we see that $\mu_{A\cup B}(1 * 0) = 0.5 < 0.6 = \min\{\mu_{A\cup B}(1), \mu_{A\cup B}(0)\}$ and from (iii) and (iv) we see that $\nu_{A\cup B}(1 * 0) = 0.4 > 0.2 = \max\{\nu_{A\cup B}(1), \nu_{A\cup B}(0)\}$ which is a contradiction. This shows that the union of any two intuitionistic fuzzy PMSsubalgebras of a PMS-algebra X may not be an intutionistic fuzzy PMS-subalgebra.

LEMMA 3.11. Let $A = (\mu_A, \nu_A)$ be an intutionistic fuzzy set in X. Then the following statements hold for any $x, y \in X$.

- 1. $1 max\{\mu_A(x), \mu_A(y)\} = min\{1 \mu_A(x), 1 \mu_A(y)\}$
- 2. $1 \min\{\mu_A(x), \mu_A(y)\} = \max\{1 \mu_A(x), 1 \mu_A(y)\}.$
- 3. $1 max\{\nu_A(x), \nu_A(y)\} = min\{1 \nu_A(x), 1 \nu_A(y)\}$
- 4. $1 \min\{\nu_A(x), \nu_A(y)\} = \max\{1 \nu_A(x), 1 \nu_A(y)\}.$

Now, we can prove the next two theorems using the above Lemma.

THEOREM 3.12. An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a PMS-algebra X is an intuitionistic fuzzy PMS-subalgebra of X if and only if the fuzzy subsets μ_A and $\overline{\nu}_A$ are fuzzy subalgebras of X.

Proof. Suppose $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X. Claim: The fuzzy subsets μ_A and $\bar{\nu}_A$ of X are fuzzy subalgebras of X. Clearly, μ_A is a fuzzy PMS-subalgebra of X directly follows from the fact that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X. Now for all $x, y \in X$, $\bar{\nu}_A(x * y) = 1 - \nu_A(x * y) \ge 1 - \max\{\nu_A(x), \nu_A(y)\}$

$$= \min\{1 - \nu_A(x), \nu_A(y)\}$$
(By Lemma 3.11(3))
$$= \min\{\bar{\nu}_A(x), \bar{\nu}_A(y)\}$$

Therefore $\bar{\nu}_A$ is a fuzzyPMS-subalgebra of X

Conversely, Suppose μ_A and $\bar{\nu}_A$ are fuzzy PMS-subalgebras of X. So, we need to show that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X. Since μ_A and $\bar{\nu}_A$ are fuzzy PMS-subalgebras of X, we have that $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}$ and $\bar{\nu}_A(x * y) \ge \min\{\bar{\nu}_A(x), \bar{\nu}_A(y)\}$, for all $x, y \in X$. Now it suffices to show that

$$\begin{split} \nu_A(x*y) &\leq \max\{\nu_A(x), \nu_A(y)\} \text{ for all } x, y \in X.\\ 1 - \nu_A(x*y) &= \bar{\nu_A}(x*y) \geq \min\{\bar{\nu_A}(x), \bar{\nu_A}(y)\}\\ &= \min\{1 - \nu_A(x), 1 - \nu_A(y)\}\\ &= 1 - \max\{\nu_A(x), \nu_A(y)\} \quad \text{(By Lemma 3.11(3))}\\ \Rightarrow \nu_A(x*y) \leq \max\{\nu_A(x), \nu_A(y)\}, \text{ for all } x, y \in X.\\ \text{Hence } A &= (\mu_A, \nu_A) \text{ is an intuitionistic fuzzy PMS-subalgebra of } X. \quad \Box \end{split}$$

COROLLARY 3.13. If μ_A is a fuzzy PMS-subalgebra of X, then $A = (\mu_A, \overline{\mu_A})$ is an intuitionistic fuzzy PMS-subalgebra of X.

Proof. Suppose μ_A is a fuzzy PMS-subalgebra of X. Then we want to show that $A = (\mu_A, \bar{\mu_A})$ is an intuitionistic fuzzy PMS-subalgebra of X. Since μ_A is a fuzzy PMS-subalgebra of X, it follows that $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}$. Then it suffices to show that $\bar{\mu_A}(x * y) \le \max\{\bar{\mu_A}(x), \bar{\mu_A}(y)\}$.

$$\begin{split} \bar{\mu_A}(x*y) &= 1 - \mu_A(x*y) \leq 1 - \min\{\mu_A(x), \mu_A(x)\}\\ &= \max\{1 - \mu_A(x), 1 - \mu_A(x)\}\\ &= \max\{\bar{\mu_A}(x), \bar{\mu_A}(x)\} \end{split}$$

 $\Rightarrow \bar{\mu_A}(x * y) \leq \max\{\bar{\mu_A}(x), \bar{\mu_A}(y)\}$ Hence $A = (\mu_A, \bar{\mu_A})$ is an intuitionistic fuzzy PMS-subalgebra of X.

COROLLARY 3.14. If $\bar{\nu}_A$ is a fuzzy PMS-subalgebra of X, then $A = (\bar{\nu}_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X.

Proof. Similar to corollary 3.13

THEOREM 3.15. An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of X is an intuitionistic fuzzy PMS-subalgebra of X if and only if $\Box A = (\mu_A, \overline{\mu}_A)$ and $\Diamond A = (\overline{\nu}_A, \nu_A)$ are intuitionistic fuzzy PMS-subalgebra of X.

Proof. Assume that an intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of X is an intuitionistic fuzzy PMS-subalgebra of X, then

 $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x * y) \le \max\{\nu_A(x), \nu_A(y)\}$. Claim: $\Box A = (\mu_A, \overline{\mu_A})$ and $\Diamond A = (\overline{\nu_A}, \nu_A)$ are intuitionistic fuzzy PMS-subalgebras of X.

(i) To show that $\Box A$ is an intuitionistic fuzzy PMS-subalgebra of X, it suffices to show that $\bar{\mu}_A(x * y) \leq max\{\bar{\mu}_A(x), \bar{\mu}_A(y)\}$, for all $x, y \in X$. Let $x, y \in X$, then $\bar{\mu}_A(x * y) = 1 - \mu_A(x * y) \leq 1 - min\{\mu_A(x), \mu_A(y)\}$

$$= max\{1 - \mu_A(x), 1 - \mu_A(y)\}\$$

= max{\(\bar{\mu_A}(x), \bar{\mu_A}(y)\)}

$$\Rightarrow \bar{\mu_A}(x * y) \le \max\{\bar{\mu_A}(x), \bar{\mu_A}(y)\}, \forall x, y \in X.$$

Hence $\Box A$ is an intuitionistic fuzzy PMS-subalgebra of X

(ii) To show that $\Diamond A$ is an intuitionistic fuzzy PMS-subalgebra of X, it suffices to show that $\bar{\nu}_A(x*y) \ge \min\{\bar{\nu}_A(x), \bar{\nu}_A(y)\}$, for all $x, y \in X$. Let $x, y \in X$, then $\bar{\nu}_A(x*y) = 1 - \nu_A(x*y) \ge 1 - \max\{\bar{\nu}_A(x), \bar{\nu}_A(y)\}$ $= \min\{1 - \nu_A(x), 1 - \nu_A(y)\}$

$$= \min\{\bar{\nu}_A(x), \bar{\mu}_A(y)\}$$

$$\Rightarrow \bar{\nu}_A(x*y) \ge \min\{\bar{\nu}_A(x), \bar{\nu}_A(y)\}, \forall x, y \in X.$$

> Hence $\Diamond A$ is an intuitionistic fuzzy PMS-subalgebra of X. The proof of the converse of this theorem is trivial.

4. Level Subsets of Intuitionistic Fuzzy PMS-subalgebras

In this section, the idea of level subsets of an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. Characterizations of level subsets of a fuzzy PMSsubalgebra of a PMS-algebra are given.

THEOREM 4.1. If $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X, then the sets $X_{\mu_A} = \{x \in X | \mu_A(x) = \mu_A(0)\}$ and $X_{\nu_A} = \{x \in X | \nu_A(x) = \nu_A(0)\}$ are PMS -subalgebra of X

Proof. Suppose $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X and let $x, y \in X_{\mu_A}$. Then $\mu_A(x) = \mu_A(0) = \mu_A(y)$. So, $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}$ $= min\{\mu_A(0), \mu_A(0)\} = \mu_A(0). \Rightarrow \mu_A(x * y) \ge \mu_A(0).$ By Lemma 3.3, we get that $\mu_A(x * y) = \mu_A(0)$ which imply that $x * y \in X_{\mu_A}$. Also, Let $x, y \in X_{\nu_A}$. Then $\nu_A(x) =$ $\nu_A(0) = \nu_A(y)$ and so $\nu_A(x * y) \le max\{\nu_A(x), \nu_A(y)\} = max\{\nu_A(0), \nu_A(0)\} = \nu_A(0).$ $\Rightarrow \nu_A(x * y) \leq \nu_A(0)$. By Lemma 3.3, we get that $\nu_A(x * y) = \nu_A(0)$ which imply that $x * y \in X_{\nu_A}.$

Hence, the sets X_{μ_A} and X_{ν_A} are PMS-subalgebras of X.

THEOREM 4.2. Let S be a nonempty subset of a PMS-algebra X and $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in X defined by

$$\mu_A(x) = \begin{cases} p & \text{if } x \in S \\ q & \text{if } x \notin S \end{cases} \quad \text{and} \quad \nu_A(x) = \begin{cases} r & \text{if } x \in S \\ s & \text{if } x \notin S \end{cases}$$

for all $p, q, r, s \in [0, 1]$ with $p \ge q, r \le s$ and $0 \le p + r \le 1, 0 \le q + s \le 1$. Then A is an intuitionistic fuzzy PMS-subalgebra of X if and only if S is a PMS-subalgebra of X. Furthermore, in this situation, $X_{\mu_A} = S = X_{\nu_A}$.

Proof. Let A be an intuitionistic fuzzy PMS-subalgebra of X. Then we want to show that S is a PMS-subalgebra of X. Let $x, y \in X$ such that $x, y \in S$.

Since $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X, we have

 $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\} = \min\{p, p\} = p$ and

 $\nu_A(x * y) \le max\{\nu_A(x), \nu_A(y)\} = max\{r, r\} = r.$

Hence $x * y \in S$. So, S is a PMS-subalgebra of X.

Conversely, suppose that S is a PMS-subalgebra of X. We claim to show that A = (μ_A, ν_A) is an intuitionistic fuzzy PMS-subalgebra of X.

Let $x, y \in X$. Now consider the following cases

case (i). If $x, y \in S$, then $x * y \in S$, since S is a PMS-subalgebra of X. Thus, $\mu_A(x * y) = p = min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x * y) = r = max\{\nu_A(x), \nu_A(y)\}$

- case (ii). If $x \in S, y \notin S$, then $\mu_A(x) = p, \mu_A(y) = q$ and $\nu_A(x) = r, \nu_A(y) = s$. Thus, $\mu_A(x * y) \ge q1 = \min\{p, q\} = \min\{\mu_A(x), \mu_A(y)\}$ implies $\mu_A(x * y) \ge q1 = \min\{p, q\} = \min\{p, q\}$ $min\{\mu_A(x)\mu_A(y)\}$ and $\nu_A(x * y) \leq s = max\{r, s\} = max\{\nu_A(x), \nu_A(y)\}$ implies $\nu_A(x * y) \le \max\{\nu_A(x), \nu_A(y)\}$
- case (iii). If $x \notin S, y \in S$, then interchanging the roles of x and y in Case (ii), yields similar results $\mu_A(x * y) \ge \min\{\mu_A(x), \mu(y)\}$ and $\nu_A(x * y) \le \max\{\nu_A(x), \nu_A(y)\}$

case (iv). If $x, y \notin S$, then $\mu_A(x) = q = \mu_A(y)$ and $\nu_A(x) = s = \nu_A$, this implies that $\mu_A(x * y) \ge q = \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x * y) \le s = \max\{\nu_A(x), \nu_A(y)\}$ Hence $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X.

Furthermore, we have

$$X_{\mu_A} = \{x \in X | \mu_A(x) = \mu_A(0)\} = \{x \in X | \mu_A(x) = p\} = S \text{ and} \\ X_{\nu_A} = \{x \in X | \nu_A(x) = \nu_A(0)\} = \{x \in X | \nu_A(x) = r\} = S. \\ \text{Hence } X_{\mu_A} = S = X_{\nu_A}.$$

DEFINITION 4.3. Let $A = (\mu_A, \nu_A)$ be any intuitionistic fuzzy subset of a PMSalgebra X such that $t, s \in [0, 1]$, then the set $U(\mu_A, t) = \{x \in X : \mu_A(x) \ge t\}$ is called an upper t-level set of an intuitionistic fuzzy subset A of X and the set $L(\mu_A, s) = \{x \in X : \nu_A(x) \le s\}$ is called a lower s-level set of an intuitionistic fuzzy subset A of X

THEOREM 4.4. An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a PMS-algebra X is an intuitionistic fuzzy PMS-subalgebra of X if and only if the the nonempty level subsets $U(\mu_A, t)$ and $L(\nu_A, s)$ of A are PMS-subalgebras of X for all $t, s \in [0, 1]$ with $0 \le t + s \le 1$.

Proof. Assume that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra X such that $U(\mu_A, t) \neq \phi$ and $L(\nu_A, s) \neq \phi$. Now we claim that $U(\mu_A, t)$ and $L(\nu_A, t)$ are PMS-subalgebras of X for all $t, s \in [0, 1]$ with $0 \leq t + s \leq 1$. Let $x, y \in U(\mu_A, t)$, then we have $\mu_A(x) \geq t$ and $\mu_A(y) \geq t$. Thus $\mu_A(x * y) \geq \min\{\mu_A(x), \mu_A(y)\} \geq \min\{t, t\} = t$

$$\Rightarrow x * y \in U(\mu_A, t)$$

Hence $U(\mu_A, t)$ is a PMS-subalgebra of X.

Also, let $x, y \in L(\nu_A, s)$, then $\nu_A(x) \leq s$ and $\nu_A(y) \leq s$ So, $\nu_A(x * y) \leq max\{\nu_A(x), \nu_A(y)\} \leq max\{t, t\} = t \Rightarrow x * y \in L(\nu_A, s)$ Hence $L(\nu_A, s)$ is a PMS-subalgebra of X.

Conversely, Suppose that $U(\mu_A, t)$ and $L(\nu_A, s)$ are PMS-subalgebra of X for all $t, s \in [0, 1]$ with $0 \le t + s \le 1$

Claim: A is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra X. Let $x, y \in X$ such that $\mu_A(x) = t_1$ and $\mu_A(y) = t_2$ for $t_1, t_2 \in [0, 1]$. Then $x \in U(\mu_A, t_1)$ and $y \in U(\mu_A, t_2)$.

Choose $t = min\{t_1, t_2\}$, then $t \le t_1$ and $t \le t_2$ $\Rightarrow U(\mu_A, t_1) \subseteq U(\mu_A, t)$ and $U(\mu_A, t_2) \subseteq U(\mu_A, t)$. $\Rightarrow x, y \in U(\mu_A, t)$, and $U(\mu_A, t_2) \subseteq U(\mu_A, t)$. Since $U(\mu_A, t)$ is a PMS-Subalgebra of X, it follows that $x * y \in U(\mu_A, t)$. Thus $\mu_A(x * y) \ge t = min\{t_1, t_2\} = min\{\mu_A(x), \mu_A(y)\}$. Hence $\mu_A(x * y) \ge min\{\mu_A(x), \mu_A(y)\}$ for all $x, y \in X$. And also, let $x, y \in X$ such that $\nu_A(x) = s_1$ and $\nu_A(y) = s_2$ for $s_1, s_2 \in [0, 1]$. Then $x \in L(\nu_A, s_1)$ and $y \in L(\nu_A, s_2)$. Choose $s = max\{s_1, s_2\}$, then $s_1 \le s$ and $s_2 \le s$ $\Rightarrow L(\nu_A, s_1) \subseteq L(\nu_A, s)$ and $L(\nu_A, s_2) \subseteq L(\nu_A, s)$. $\Rightarrow x, y \in U(\nu_A, s)$, Since $L(\nu_A, s)$ is a PMS-subalgebra of X, it follows that $x * y \in L(\nu_A, s)$. Thus $\nu_A(x * y) \le s = max\{s_1, s_2\} = max\{\nu_A(x), \nu_A(y)\}$.

Hence $\nu_A(x * y) \leq max\{\nu_A(x), \nu_A(y)\}$ for all $x, y \in X$.

Hence A is an intuitionistic fuzzy PMS-subalgebra of a PMS -algebra X.

REMARK 4.5. The PMS-subalgebras $U(\mu_A, t)$ and $L(\nu_A, s)$ of X for all $t, s \in [0, 1]$ obtained in the above theorem are called level PMS-subalgebras of X.

COROLLARY 4.6. An intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a PMS-algebra X is an intuitionistic fuzzy PMS-subalgebra of X if and only if the level subsets $U(\mu_A, t)$ and $L(\nu_A, s)$ of A are PMS-subalgebras of X for all $t \in Im(\mu_A)$ and $s \in Im(\nu_A)$ with $0 \le t + s \le 1$

THEOREM 4.7. Let S be a subset of X and $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in X defined by

$$\mu_A(x) = \begin{cases} t & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases} \quad \text{and} \quad \nu_A(x) = \begin{cases} s & \text{if } x \in S \\ 1 & \text{if } x \notin S \end{cases}$$

for all $t, s \in [0, 1]$ such that $0 \le t + s \le 1$. If $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X, then S is a level PMS-subalgebra of X.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X. Then we need to show that S is a level PMS-subalgebra of X. Let $x, y \in S$, then $\mu_A(x) = t =$ $\mu_A(y)$ and $\nu_A(x) = s = \nu_A(y)$. So, $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\} = \min\{t, t\} = t$ and $\nu_A(x * y) \leq max\{\mu_A(x), \nu_A(y)\} = max\{s, s\} = s$ which implies that $x * y \in S$. Hence S is a PMS-subalgebra of X. Also, by theorem 4.4, $U(\mu_A, t)$ is a level subalgebra of X, and

 $U(\mu_A, t) = \{x \in X : \mu_A(x) \ge t\} = S = \{x \in X : \nu_A(x) \le s\}.$

Thus, S is a level PMS-Subalgebra of X corresponding to the intuitionistic fuzzy PMS-subalgebra $A = (\mu_A, \nu_A)$ of X.

THEOREM 4.8. If S is any PMS-subalgebra of X, then there exists an intuitionistic fuzzy PMS-subalgebra A of X, in which S satisfies both the upper level and lower level PMS-subalgebra of A in X.

Proof. Let S be a PMS-subalgebra of a PMS-algebra X and $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in X defined by

$$\mu_A(x) = \begin{cases} t & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases} \text{ and } \nu_A(x) = \begin{cases} s & \text{if } x \in S \\ 1 & \text{if } x \notin S \end{cases}$$

for all $t, s \in [0, 1]$ such that $0 \le t + s \le 1$.

Clearly, $U(\mu_A, t) = \{x \in X : \mu_A(x) \ge t\} = S$. Let $x, y \in X$. To prove that A = (μ_A, ν_A) is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra X, we consider the following cases:

case(i). If
$$x, y \in S$$
, then $x * y \in S$. Since S is a PMS-subalgebra of a PMS-algebra X.
 $\mu_A(x) = \mu_A(y) = \mu_A(x * y) = t$ and $\nu_A(x) = \nu_A(y) = \nu_A(x * y) = s$.

Therefore $\mu_A(x * y) = \min\{\mu_A(x), \mu_A(y)\}\ \text{and}\ \nu_A(x * y) = \max\{\nu_A(x), \nu_A(y)\}\$ case(ii). If $x \in S, y \notin S$, then we have $\mu_A(x) = t, \mu_A(y) = 0$ and $\nu_A(x) = s, \nu_A(y) = 1$. Thus, $\mu_A(x*y) \ge 0 = \min\{t, 0\} = \min\{\mu_A(x), \mu_A(y)\}$ which implies that $\mu_A(x*y) \ge 0 = \min\{t, 0\} = \min\{\mu_A(x), \mu_A(y)\}$ $y \ge \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x * y) \le 1 = \max\{s, 1\} = \max\{\nu_A(x), \nu_A, (y)\}$

implies
$$\nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\}$$

- implies $\nu_A(x * y) \leq \max\{\nu_A(x), \nu_A(y)\}\$ case(iii). If $x \notin S, y \in S$, then interchanging the roles of x and y in Case (ii), yields similar results $\mu_A(x * y) \ge \min\{\mu_A(x), \mu(y)\}$ and $\nu_A(x * y) \le \max\{\nu_A(x), \nu_A(y)\}$
- case(iv). If $x, y \notin S$ then $\mu_A(x) = 0 = \mu_A(y)$ and $\nu_A(x) = 1 = \nu_A(y)$. Then $\mu_A(x * y) \ge 0 = \min\{\mu_A(x), \mu_A(y)\} \text{ and } \nu_A(x * y) \le 1 = \max\{\nu_A(x), \nu_A(y)\}.$

So, in all cases we get $\mu_A(x*y) \ge \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x*y) \le \max\{\nu_A(x), \nu_A(y)\}$, for all $x, y \in X$.

Thus, A is an intuitionistic fuzzy PMS-subalgebra of X.

We can also prove the following theorem as a generalization of theorem 4.8.

THEOREM 4.9. Let $\{S_i\}$ be any family of a PMS-subalgebra of a PMS-algebra X such that $S_0 \subset S_1 \subset S_2 \subset ... \subset S_n = X$, then there exists an intuitionistic fuzzy PMS-subalgebra $A = (\mu_A, \nu_A)$ of X whose level PMS-subalgebras are exactly the PMS-subalgebras $\{S_i\}$.

Proof. Suppose $t_0 > t_1 > t_2 > ... > t_n$ and $s_0 < s_1 < s_2... < s_n$ where each $t_i, s_i \in [0, 1]$ with $0 \le t_i + s_i \le 1$. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set defined by

$$\mu_A(x) = \begin{cases} t_0 & \text{if } x \in S_0 \\ t_i & \text{if } x \in S_i - S_{i-1}, 0 < i \le n. \end{cases} \text{ and } \nu_A(x) = \begin{cases} s_0 & \text{if } x \in S_0 \\ s_i & \text{if } x \in S_i - S_{i-1}, 0 < i \le n. \end{cases}$$

Now, We claim that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X and $U(\mu_A, t_i) = S_i = L(\nu_A, s_i)$ for $0 \le i \le n$.

Let $x, y \in X$ Then, we consider the following two cases

Case (i): Let $x, y \in S_i - S_{i-1}$. Therefore by the definition of $A = (\mu_A, \nu_A)$, we have $\mu_A(x) = t_i = \mu_A(y)$ and $\nu_A(x) = s_i = \nu_A(y)$. Since S_i is a PMS-subalgebra of X, it follows that $x * y \in S_i$, and so either $x * y \in S_i - S_{i-1}$ or $x * y \in S_{i-1}$ or $x * y \in S_{i-1} - S_{i-2}$. $\Rightarrow \mu_A(x) = t_i$ or $\mu_A(x) = t_{i-1} > t_i$ and $\nu_A(x) = s_i$ or $\nu_A(x) = s_{i-1} > s_i$.

In any case we conclude that

 $\mu_A(x*y) \ge t_i = \min\{\mu_A(x), \mu_A(y)\} \text{ and } \nu_A(x*y) \le s_i = \max\{\nu_A(x), \nu_A(y)\}.$ Case (ii): For $i > j, t_j > t_i, s_j < s_i$ and $S_j \subset S_i$. Let $x \in S_i - S_{i-1}$ and $y \in S_j - S_{j-1}$. Then, $\mu_A(x) = t_i, \mu_A(y) = t_j > t_i, \nu_A(x) = s_i$ and $\nu_A(y) = s_j < s_i$. Then $x*y \in S_i$ since S_i is a PMS-subalgebra of X and $S_j \subset S_i$.

Hence $\mu_A(x * y) \ge t_i = \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x * y) \le s_i = \max\{\nu_A(x), \nu_A(y)\}$ by case (i). Thus $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy PMS-subalgebra of X.

Also, from the definition of $A = (\mu_A, \nu_A)$, it follows that $Im(\mu_A) = \{t_0, t_1, ..., t_n\}$ and $Im(\nu_A) = \{s_0, s_1, ..., s_n\}$. So, $U(\mu_A, t_i)$ and $L(\nu_A, s_i)$ are the level subalgebras of A for $0 \le i \le n$, and form the chains,

 $U(\mu_A, t_0) \subset ... \subset U(\mu_A, t_n) = X$ and $L(\nu_A, s_0) \subset ... \subset L(\nu_A, s_n) = X$. Now, $U(\mu_A, t_0) = \{x \in X : \mu_A(x) \ge t_0\} = S_0 = \{x \in X : \nu_A(x) \le s_0\} = L(\nu_A, s_0)$. Finally, we prove that $U(\mu_A, t_i) = S_i = L(\nu_A, s_i)$ for $0 < i \le n$.

Now let $x \in S_i$, then $\mu_A(x) \ge t_i$ and $\nu_A(x) \le s_i$. This implies $x \in (\mu_A, t_i)$ and $x \in L(\nu_A, s_i)$. Hence $S_i \subseteq (\mu_A, t_i)$ and $S_i \subseteq L(\nu_A, s_i)$. If $x \in U(\mu_A, t_i)$ and $x \in L(\nu_A, s_i)$, then $\mu_A(x) \ge t_i$ and $\nu_A(x) \le s_i$ which implies that $x \notin S_j$ for j > i. For otherwise, if $x \in S_j$, then $\mu_A(x) \ge t_j$ and $\nu_A(x) \le s_j$, which implies $t_i > \mu_A(x) \ge t_j$ and $s_i < \nu_A(x) \le s_j$. This contradicts the assumption that $x \in U(\mu_A, t_i)$ and $x \in L(\nu_A, s_i)$. Hence $\mu_A(x) \in \{t_0, t_1, ..., t_n\}$ and $\nu_A(x) \in \{s_0, s_1, ..., s_n\}$. So $x \in S_k$ for some $k \le i$. As $S_k \subseteq S_i$, it follows that $x \in S_i$. Hence $U(\mu_A, t_i) \subseteq S_i$ and $L(\nu_A, s_i) \subseteq S_i$. Therefore $U(\mu_A, t_i) = S_i = L(\nu_A, s_i)$ for $0 < i \le n$.

Note that the number of PMS-subalgebras of a finite PMS–algebra X is finite whereas the number of level PMS-subalgebras of an intuitionistic fuzzy PMS-subalgebra A appears to be infinite. However, every level PMS-subalgebra of X is a PMS-subalgebra

573

of X, not all of these PMS-subalgebras are unique. The next theorem illustrates this situation.

THEOREM 4.10. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X, then

- (i). The upper level PMS-subalgebras $U(\mu_A, t_1)$ and $U(\mu_A, t_2)$, (with $t_1 < t_2$) of an intuitionistic fuzzy PMS-subalgebra A are equal if and only if there is no $x \in X$ such that $t_1 \leq \mu_A(x) < t_2$.
- (ii). The lower level PMS-sub algebras $L(\nu_A, s_1)$ and $L(\nu_A, s_2)$, (with $s_1 > s_2$) of an intuitionistic fuzzy PMS-subalgebra A are equal if and only if there is no $x \in X$ such that $s_1 \ge \nu_A(x) > s_2$.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X. Since the proofs for both (i) and (ii) are similar, here we prove for only (ii).

Suppose that $L(\nu_A, s_1) = L(\nu_A, s_2)$, for $s_1 > s_2$. Then we claim that there is no $x \in X$ such that $s_1 \ge \nu_A(x) > s_2$. Assume that there exists $x \in X$ such that $s_1 \ge \mu_A(x) < s_2$. $\Rightarrow x \in L(\nu_A, s_1)$ but $x \notin L(\nu_A, s_2)$

$$\Rightarrow L(\mu_A, s_2)$$
 is a proper subset of $L(\nu_A, s_1)$

This contradicts to the assumption that $L(\nu_A, s_1) = U(\nu_A, s_2)$.

Hence there is no $x \in X$ such that $s_1 \ge \nu_A(x) > s_2$.

Conversely, suppose that there is no $x \in X$ such that $s_1 \ge \nu_A(x) > s_2$. Then we prove that $L(\nu_A, s_1) = L(\nu_A, s_2)$.

Since
$$s_1 > s_2$$
, we get $L(\nu_A, s_2) \subseteq L(\nu_A, s_1)$
Now, $x \in L(\nu_A, s_1) \Rightarrow \nu_A(x) \le s_1$. (1)

 $\Rightarrow \nu_A(x) \le s_2, \quad \text{(Since } \nu_A(x) \text{ does not lie between } s_1 \text{ and } s_2\text{).}$ $\Rightarrow x \in L(\nu_A, s_2). \quad \text{(Since } \nu_A(x) \text{ does not lie between } s_1 \text{ and } s_2\text{).}$

Hence
$$L(\nu_A, s_1) \subseteq L(\nu_A, t_2)$$
 (2)
From (1) and (2) we get $L(\nu_A, s_1) = L(\nu_A, s_2)$.

REMARK 4.11. As the consequence of Theorem 4.10, the level subalgebras of an intuitionistic fuzzy PMS-algebra $A = (\mu_A, \nu_A)$ of a finite PMS-algebra X form a chain,

 $U(\mu_A, t_0) \subset U(\mu_A, t_1) \subset \ldots \subset U(\mu_A, t_n) = X$ and $L(\nu_A, s_0) \subset L(\nu_A, s_1) \subset \ldots \subset L(\nu_A, s_n) = X$, where $t_0 > t_1 > \ldots > t_n$ and $s_0 < s_1 < \ldots < s_n$.

COROLLARY 4.12. Let X be a finite PMS-algebra and $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X.

- (i). If $Im(\mu_A) = \{t_1, \ldots, t_n\}$, then the family of PMS-subalgebras $\{U(\mu_A, t_i)|1 \le i \le n\}$, constitutes all the upper level PMS-subalgebras of A in X.
- (ii). If $Im(\nu_A) = \{s_1, \ldots, s_n\}$, then the family of PMS-subalgebras $\{L(\nu_A, s_i)|1 \le i \le n\}$, constitutes all the lower level PMS-subalgebras of A in X.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X such that $Im(\mu_A) = \{t_1, t_2, \ldots, t_n\}$ with $t_1 < t_2 < \ldots < t_n$ and $Im(\nu_A) = \{s_1, s_2, \ldots, s_n\}$ with $s_1 > s_2 > \ldots < s_n$.

(i). Let $t \in [0,1]$ and $t \notin Im(\mu_A)$. Now, we can consider the following cases. case (1). If $t \leq t_1$, then $U(\mu_A, t_1) = X = U(\mu_A, t)$. case (2). If $t > t_n$, then $U(\mu_A, t) = \{x \in X | \mu_A(x) \geq t\} = \{x \in X | \mu_A(x) > t_n\} = \emptyset$ case (3). If $t_{i-1} < t < t_i$, then $U(\mu_A, t) = U(\mu_A, t_i)$ by theorem 4.10(i), since there is no $x \in X$ such that $t \leq \mu_A(x) < t_i$. Thus for any $t \in [0, 1]$, the level PMS-subalgebra is one of $\{U(\mu_A, t_i) | i = 1, 2, ..., n\}$.

(ii). proof of (ii) is similar to (i)

COROLLARY 4.13. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X with finite images.

- (i). If $U(\mu_A, t_i) = U(\mu_A, t_j)$ for any $t_i, t_j \in Im(\mu_A)$, then $t_i = t_j$.
- (ii). If $L(\nu_A, s_i) = L(\nu_A, s_j)$ for any $s_i, s_j \in Im(\nu_A)$, then $s_i = s_j$.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy PMS-subalgebra of X with finite images. Here we only prove (ii) the prove of (i) can be done similarly. Assume $L(\nu_A, s_i) = L(\nu_A, t_j)$ for $s_i, s_j \in Im(\nu_A)$. So to show that $s_i = s_j$ assume on contrary, that is, $s_i \neq s_j$. Without loss of generality assume $s_i > s_j$. Let $x \in L(\nu_A, s_i)$, then $\nu_A(x) < s_i < s_i$

Let
$$x \in L(\nu_A, s_j)$$
, then $\nu_A(w) \subseteq s_j < s_i$.
 $\Rightarrow \nu_A(x) < s_i$
 $\Rightarrow x \in L(\nu_A, s_i)$
Let $x \in X$ such that $s_i > \nu_A(x) > s_j$. Then $x \in L(\nu_A, s_i)$ but $x \notin L(\nu_A, s_j)$
 $\Rightarrow L(\nu_A, s_j) \subset L(\nu_A, s_i)$
 $\Rightarrow L(\nu_A, t_i) \neq L(\nu_A, t_j)$ which contradics the hypothesis that
 $L(\nu_A, s_i) = L(\nu_A, s_j)$. Therefore, $s_i = s_j$.

 $S_i) = L(\nu_A, S_j)$

5. Conclusion

In this paper, we introduced the notion of intuitionistic fuzzy PMS-subalgebras of PMS-algebras and some results are obtained. The idea of level subsets of an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. The relation between an intuitionistic fuzzy sets in a PMS-algebra and their level sets is discussed and some interesting results are obtained. The concepts can further be extended to intuitionistic fuzzy ideals of a PMS-algebra for new results in our future work.

References

- [1] M. Akram, Bifuzzy ideals of K-algebras, Transactions on Mathematics, 7 (2008), 313–322.
- [2] K. T. Atanassov Intuitionistic Fuzzy sets, Fuzzy Sets and Systems, (1983).
- [3] K. T. Atanassov, Intuitionistic Fuzzy sets, Fuzzy Sets and Systems **20** (1) (1986), 87–96.
- [4] K. T. Atanassov, New operations defined over the Intuitionistic fuzzy sets, Fuzzy Sets and Systems, **61** (2) (1994), 137–142.
- [5] M. Chandramouleeswaran, P. Muralikrishna, On Intuitionistic L-Fuzzy Subalgebras of BGalgebras, InInternational Mathematical Forum, 5(20),(2010), 995–1000.
- [6] M. Chandramouleeswaran, P. Muralikrishna, The Intuitionistic L-Fuzzy Subalgebras of BFalgebras, IGlobal J. Pure Appl. Math, 6 (1) (2010), 1–6.
- [7] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV1, Proceedings of the Japan Academy, 42 (1966), 19–22
- [8] K. Iseki, On BCI-algebras, In Math. Seminar Notes, 8 (1980), 125–130.
- [9] Y.H. Kim, T.E. Jeong, Intuitionistic fuzzy structure of B-algebras, Journal of applied mathematics and computing, 22 (1) (2006), 491-500
- [10] A. Rosenfeld, Fuzzy groups, Journal of mathematical analysis and applications, **35** (3) (1971), 512 - 517.
- [11] P.M. Sithar Selvam, K.T. Nagalakshmi, Fuzzy PMS-ideals in PMS-algebras, Annals of Pure and Applied Mathematics, **12** (2), (2016), 153–159.

- 576 Beza Lamesgin Derseh, Berhanu Assaye Alaba, and Yohannes Gedamu Wondifraw
- [12] P.M. Sithar Selvam, K.T. Nagalakshmi, On PMS-algebras, Transylvanian Review, 24 (10),(2016), 1622–1628.
- [13] T. Senapati, M. Bhowmik, M. Pal, K.P. Shum, Characterization of intuitionistic fuzzy BGsubalgebras of BG-algebras, Journal of Discrete Mathematical Sciences and Cryptography, 17 (21)(7-8) (2018), 1549–1558.
- [14] T. Senapati, M. Bhowmik, M. Pal, Intuitionistic fuzzifications of ideals in BG-algebras, Mathematica Aeterna, 2(9),(2012), 761–78.
- [15] L.A. Zadeh, *Fuzzy sets*, Information and Control, 8 (1965), 338–353.
- [16] A. Zarandi, A. B. Saeid, Intuitionistic Fuzzy Ideals of BG-Algebras, world Academy of Science, Engineering and Technology, 5 (2005), 187–189.

Beza Lamesgin Derseh

Department of Mathematics, Debre Markos University, Debre Markos, Ethiopia *E-mail*: dbezalem@gmail.com

Berhanu Assaye Alaba

Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia *E-mail*: birhanu.assaye2901130gmail.com

Yohannes Gedamu Wondifraw

Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia *E-mail*: yohannesg27@gmail.com