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s-CONVEX FUNCTIONS IN THE THIRD SENSE

Serap Kemali, Sevda Sezer*, Gültekin Tınaztepe, and Gabil Adilov

Abstract. In this paper, the concept of s-convex function in the third sense is
given. Then fundamental characterizations and some basic algebraic properties of
s-convex function in the third sense are presented. Also, the relations between the
third sense s-convex functions according to the different values of s are examined.

1. Introduction

Convex functions are one of the important structures which interconnect the branches
of both pure and applied mathematics such as geometry, analysis and optimization. In
this context, the new findings about these functions in one aspect of mathematics have
generally impact on the others, even other sciences e.g. economics. To illustrate, the
quasiconvex functions which can be thought as the extension of convex functions have
led to new approaches in microeconomics, game theory and equilibrium theory [14,18].
Another generalizations of convexity, B-convexity and B−1-convexity have made the
progress in same theories for abstract economies [1–3, 10, 11, 15, 28, 29]. The abstract
convex functions with respect to some elementary function families, which is another
approach in generalization of these functions, have made substantial contributions to
optimization theory [4, 25]. As it can be seen from the examples, the generalizations
and extensions of the notion of convexity can yield to notable advances. So, they have
always a place in pure and applied sciences. This study may be counted as one of
them.

The classical definition of convex functions on a convex subset A of vector space
X is the statement that f : A→ R is said to be convex function if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ A and λ ∈ [0, 1].
In [20], one of the most extensive generalizations of the definition above is intro-

duced, namely, k-convex sets and (k, h)-convex functions, as follows.
Let k : (0, 1)→ R and D be subset of X. If

(1) k(λ)x+ k(1− λ)y ∈ D
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for all x, y ∈ D and λ ∈ (0, 1), then D is called k-convex set. Let D ⊆ X be a
k-convex set and let h : (0, 1)→ R and f : D → R. If for all x, y ∈ D and λ ∈ (0, 1),

(2) f(k(λ)x+ k(1− λ)y) ≤ h(λ)f(x) + h(1− λ)f(y)

is satisfied, then f is said to be (k, h)-convex function. The case of k(λ) = λ and
h(λ) = λ gives the classical definition of convex set and function. In case of the choice
of k(λ) and h(λ) as the powers of λ, this definition yields to special kinds of convexity
which attract many researchers.

By taking k(λ) = λ
1
p and h(λ) = λ

1
p for 0 < p ≤ 1 in (1), (2), the concepts

of p-convex set and p-convex function are obtained, which have already introduced
in [7, 27].

Definition 1.1. [7] Let U ⊆ Rn and 0 < p ≤ 1. If for each x, y ∈ U , λ, µ ≥ 0 such
that λp + µp = 1, λx+ µy ∈ U , then U is called a p-convex set in Rn.

It is clear that any interval of real numbers including zero or accepting zero as a
boundary point is a p-convex set.

Definition 1.2. [27] Let U ⊆ Rn and let f : U → R be a function. If the set

epif =
{

(x, α) ∈ Rn+1 : x ∈ U, α ∈ R, f(x) ≤ α
}

is p-convex set, then f is called a p-convex function.

The following theorem gives us a characterization of p-convex functions:

Theorem 1.1. [27] Let U ⊆ Rn and let f : U → R be a function. Then, f is
a p-convex function if and only if U is a p-convex set, for all λ, µ ≥ 0 such that
λp + µp = 1 and for each x, y ∈ U
(3) f(λx+ µy) ≤ λf(x) + µf(y)

is satisfied.

The case k(λ) = λ
1
s and h(λ) = λ for 0 < s ≤ 1 in (2) corresponds to the following

type of s-convexity, which was introduced by Orlicz in [22] and was used in the theory
of Orlicz spaces [19,21,24].

In the following definition, the concept of s-convex set is the same as the concept
of p-convex set in Definition 1.1.

Definition 1.3. [22] Let s ∈ (0, 1] and U ⊆ Rn be a s-convex set. A function
f : U → R is said to be s-convex in the first sense if

(4) f(λx+ µy) ≤ λsf(x) + µsf(y)

for all x, y ∈ U and λ, µ ≥ 0 with λs + µs = 1.

In the case k(λ) = λ and h(λ) = λs for 0 < s ≤ 1 in (2), the following type of
s-convexity is obtained as follows:

Definition 1.4. [9] Let s ∈ (0, 1] and U ⊆ Rn be a convex set. A function
f : U → R is said to be s-convex in the second sense if the inequality

(5) f(λx+ µy) ≤ λsf(x) + µsf(y)

holds for all x, y ∈ U and all λ, µ ≥ 0 with λ+ µ = 1.
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The classes of s-convex functions in first and second senses are denoted by K1
s and

K2
s respectively. It can be easily seen that in the case s = 1, each type of s-convexity

is reduced to the ordinary convexity of functions.
The origin of the p-convex sets involves the p-normed spaces [7,23]. Some properties

involving convex hull, discrete sets and Caratheodory Theorem are found in [5–8,17,
23], and the references therein for further reading. Also, there is a large number
of studies on s-convex functions and their properties, relevant inequalities mainly
including Hermite-Hadamard type inequalities ( [12, 13, 16, 22, 26] and the references
therein).

In this study, replacing k(λ) = λ
1
s and h(λ) = λ

1
s2 in (2), we present a new

type of convex function called the s-convex function in the third sense. Its basic
characterizations, basic algebraic and functional properties and also relations between
s-convex functions in the third sense with respect to different values of s are examined.

2. s-Convex Function In The Third Sense And Their Properties

Definition 2.1. Let s ∈ (0, 1] and U ⊆ Rn be a s-convex set. A function f : U →
R is said to be s-convex function in the third sense if the inequality

(6) f(λx+ µy) ≤ λ
1
s f(x) + µ

1
s f(y)

is satisfied for all x, y ∈ U and λ, µ ≥ 0 such that λs + µs = 1.
The inequality (6) is equivalent to the following inequalities:

f(λ
1
sx+ (1− λ)

1
s y) ≤ λ

1
s2 f(x) + (1− λ)

1
s2 f(y)

or

f(λx+ (1− λs)
1
s y) ≤ λ

1
s f(x) + (1− λs)

1
s2 f(y)

where λ ∈ [0, 1] and x, y ∈ U . The class of these functions is denoted by K3
s . In this

paper, U ⊆ Rn will be taken as a s-convex set.

Example 2.1. Let s ∈ (0, 1] and a, b, c ∈ R with b, c < 0. The function

f(x) =

{
a, if x = 0

bx
1
s + c, if x > 0

is s-convex function in the third sense on (0,∞). By adding extra condition c ≤ a,
we can say f is s-convex function in the third sense on [0,∞).

Assume that x, y ∈ (0,∞). Then λx+ µy > 0 with λs + µs = 1.

f(λx+ µy) = b (λx+ µy)
1
s + c

≤ b
(
λ

1
sx

1
s + µ

1
s y

1
s

)
+ c

= b
(
λ

1
sx

1
s + µ

1
s y

1
s

)
+ c (λs + µs)

≤ b
(
λ

1
sx

1
s + µ

1
s y

1
s

)
+ c
(
λ

1
s + µ

1
s

)
= λ

1
s

(
bx

1
s + c

)
+ µ

1
s

(
by

1
s + c

)
= λ

1
s f(x) + µ

1
s f(y)
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By considering extra condition c ≤ a, we have two cases x = 0, y 6= 0 and x = y = 0.
For y > x = 0 we have

f(λ0 + µy) = f(µy) = bµ
1
s y

1
s + c = bµ

1
s y

1
s + c (λs + µs)

≤ bµ
1
s y

1
s + c

(
λ

1
s + µ

1
s

)
= λ

1
s c+ µ

1
s

(
by

1
s + c

)
= λ

1
s c+ µ

1
s f(y)

≤ λ
1
sa+ µ

1
s f(y)

= λ
1
s f(0) + µ

1
s f(y)

For y = x = 0 we have

f(λ0 + µ0) = a ≤ a
(
λ

1
s + µ

1
s

)
= λ

1
s f(0) + µ

1
s f(0).

Example 2.2. Let

U = {(x1, x2, ..., xn) ∈ Rn| x1 + · · ·+ xn ≥ 0}

and k ∈ R+. It can be clearly seen that U is a s-convex set. If we define f : U → R
such that f(x1, · · · , xn) = −k(x1 + · · ·+xn), then f ∈ K3

s . Because, we have λ, µ ≥ 0
with λs + µs = 1, it can be written

f(λ(x1, · · · , xn) + µ(y1, · · · , yn)) = −k(λx1 + µy1 + · · ·+ λxn + µyn)
= λ(−k)(x1 + · · ·+ xn) + µ(−k)(y1 + · · ·+ yn)

≤ λ
1
s (−k)(x1 + · · ·+ xn) + µ

1
s (−k)(y1 + · · ·+ yn)

= λ
1
s f(x1 + · · ·+ xn) + µ

1
s f(y1 + · · ·+ yn).

So, it is obtained that f ∈ K3
s .

Theorem 2.1. Let f : U → R+. If f ∈ K3
s , then f is a s-convex function (where,

the concept of s-convex function is the same as the concept of p-convex function in
Definition 1.2).

Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λs + µs = 1. Then, we have

f(λx+ µy) ≤ λ
1
s f(x) + µ

1
s f(y) ≤ λf(x) + µf(y).

Theorem 2.2. Let f : U → R+ be a function. If f ∈ K3
s , then f ∈ K1

s .

Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λs + µs = 1. Then, we have

f(λx+ µy) ≤ λ
1
s f(x) + µ

1
s f(y) ≤ λsf(x) + µsf(y).

Theorem 2.3. Let f : U → R+ be a function. If f ∈ K3
s , then the inequality

f(
x+ y

2
1
s

) ≤ f(x) + f(y)

2
1
s

is valid for all x, y ∈ U .
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Proof. From s ∈ (0, 1], it is clear that 1

2
1
s2
≤ 1

2
1
s
. Thus, the inequalities

f(
x+ y

2
1
s

) ≤ f(x) + f(y)

2
1
s2

≤ f(x) + f(y)

2
1
s

are obtained.

Theorem 2.4. Let f : U → R be a function and the function g : [0, 1]→ R define

by g(t) = f(tx+ (1− ts) 1
s y). If g ∈ K3

s , then f ∈ K3
s .

Proof. Let x, y ∈ U and λ ∈ [0, 1]. Then

f
(
λx+ (1− λs) 1

s y
)

= g(λ) = g
(
λ · 1 + (1− λs) 1

s · 0
)

≤ λ
1
s g(1) + (1− λs)

1
s2 g(0)

= λ
1
s f(x) + (1− λs)

1
s2 f(y).

Theorem 2.5. Let fi : U → R be functions and f : U → R define by f(x) =
m∑
i=1

aifi(x) where ai ≥ 0. If fi ∈ K3
s for i = 1, 2, . . . ,m, then f ∈ K3

s .

Proof. For x, y ∈ U and λ, µ ≥ 0 such that λs + µs = 1, we have

f(λx+ µy) =
m∑
i=1

aifi(λx+ µy)

≤
m∑
i=1

ai

(
λ

1
s fi(x) + µ

1
s fi(y)

)
= λ

1
s

m∑
i=1

aifi(x) + µ
1
s

m∑
i=1

aifi(y)

= λ
1
s f(x) + µ

1
s f(y).

This shows that f ∈ K3
s .

Theorem 2.6. Let fi : U → R be functions and f : U → R define by f(x) =
max
1≤i≤m

{fi(x)}. If fi ∈ K3
s for i = 1, 2, . . . ,m, then f ∈ K3

s .

Proof. For each x, y ∈ U and λ, µ ≥ 0 such that λs + µs = 1,

f(λx+ µy) = max
1≤i≤m

{fi(λx+ µy)}

≤ max
1≤i≤m

{
λ

1
s fi(x) + µ

1
s fi(y)

}
≤ max

1≤i≤m

{
λ

1
s fi(x)

}
+ max

1≤i≤m

{
µ

1
s fi(y)

}
≤ λ

1
s max
1≤i≤m

{fi(x)}+ µ
1
s max
1≤i≤m

{fi(y)}

= λ
1
s f(x) + µ

1
s f(y).



598 Serap Kemali, Sevda Sezer, Gültekin Tınaztepe, and Gabil Adilov

Thus, f = max
1≤i≤m

{fi} ∈ K3
s .

Theorem 2.7. Let f : U → R+ be a function. If f ∈ K3
s , then any local minimum

of f is a global minimum.

Proof. Let x∗ be a local minimum of f . Assume the contrary, that is, f(y) < f(x∗),
for some y ∈ U . Since f ∈ K3

s , for all λ, µ ≥ 0 such that λs + µs = 1, we have

f(λx∗ + µy) ≤ λ
1
s f(x∗) + µ

1
s f(y)

≤ λsf(x∗) + µsf(y)
≤ (1− µs)f(x∗) + µsf(y)
≤ f(x∗) + µs(f(y)− f(x∗))
< f(x∗)

for some small µ > 0. This contradicts with x∗ being a local minimum point. Hence
every local minimum of f is a global minimum.

The Jensen inequality for s-convex functions in the third sense is given in the
following theorem.

Theorem 2.8. Let f : U → R be a function, x1, . . . , xm ∈ U and λ1, . . . , λm ≥ 0
with λs1 + · · ·+ λsm = 1. If f ∈ K3

s , then

f (λ1x1 + · · ·+ λmxm) ≤ λ
1
s
1 f (x1) + · · ·+ λ

1
s
mf (xm) .

Proof. Induction on m will be used in proof. The inequality is trivially true when
m = 2. Assume that it is true when m = k, where k > 2. Now we show the validity
for m = k + 1. Let x be defined by the equation

x = λ1x1 + · · ·+ λk+1xk+1

where x1, . . . , xk+1 ∈ U , λ1, . . . , λk+1 ≥ 0 with λs1 + · · · + λsk+1 = 1. At least one of
λ1, . . . , λk+1 must be less than 1. Let us say λk+1 < 1 and write

λs1 + · · ·+ λsk = 1− λsk+1.

One can find λ∗ < 1 such that λs1 + · · · + λsk = λs∗. Using

(
λ1
λ∗

)s
+ · · · +

(
λk
λ∗

)s
= 1

and the assumption of hypothesis, we get

f

(
λ1
λ∗
x1 + · · ·+ λk

λ∗
xk

)
≤
(
λ1
λ∗

) 1
s

f(x1) + · · ·+
(
λk
λ∗

) 1
s

f(xk).

Thus,

f(x) = f
(
λ∗

(
λ1
λ∗
x1 + · · ·+ λk

λ∗
xk

)
+ λk+1xk+1

)
≤ λ

1
s
∗ f
(
λ1
λ∗
x1 + · · ·+ λk

λ∗
xk

)
+ λ

1
s
k+1f(xk+1)

≤ λ
1
s
1 f(x1) + · · ·+ λ

1
s
k+1f(xk+1)

is obtained. This completes the proof by induction.

Theorem 2.9. Let f : R+ → R be an increasing function and g : U → R+ be a
function. If f, g ∈ K3

s , then f ◦ g ∈ K3
s .
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Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λs + µs = 1.

(f ◦ g)(λx+ µy) = f(g(λx+ µy))

≤ f(λ
1
s g(x) + µ

1
s g(y))

≤ f(λg(x) + µg(y))

≤ λ
1
s f(g(x)) + µ

1
s f(g(y))

= λ
1
s (f ◦ g)(x) + µ

1
s (f ◦ g)(y).

Hence, f ◦ g ∈ K3
s .

Theorem 2.10. If f ∈ K3
s and g : R → R is an increasing linear function, then

g ◦ f ∈ K3
s .

Proof. Let x, y ∈ U and λ, µ ≥ 0 such that λs + µs = 1.

(g ◦ f)(λx+ µy) = g(f(λx+ µy))

≤ g(λ
1
s f(x) + µ

1
s f(y))

= λ
1
s g(f(x)) + µ

1
s g (f(y))

= λ
1
s (g ◦ f)(x) + µ

1
s (g ◦ f)(y).

Hence, g ◦ f ∈ K3
s .

Theorem 2.11. Let g : U → V be a linear transformation and f : V → R be a
function. If f ∈ K3

s , then f ◦ g ∈ K3
s .

Proof. Let λ, µ ≥ 0 such that λs + µs = 1. Thus, we get

(f ◦ g)(λx+ µy) = f(g(λx+ µy))
= f(λg(x) + µg(y))

≤ λ
1
s f(g(x)) + µ

1
s f(g(y))

= λ
1
s (f ◦ g)(x) + µ

1
s (f ◦ g)(y)

for all x, y ∈ U . Hence, f ◦ g ∈ K3
s .

Theorem 2.12. Let f : U → R be a function and f ∈ K3
s . Then, the inequality

(6) holds for all x, y ∈ U and λ, µ ≥ 0 with λs + µs ≤ 1 if and only if f(0) ≤ 0.

Proof. Necessity is obvious by taking λ = µ = 0. Therefore, assume that x, y ∈ U
and λ, µ ≥ 0 and 0 < γ < 1 where γ = λs + µs. Put α = λγ−

1
s and β = µγ−

1
s . Then

αs + βs =
λs

γ
+
µs

γ
= 1
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and hence we have sufficiency:

f(λx+ µy) = f
(
αγ

1
sx+ βγ

1
s y
)

≤ α
1
s f(γ

1
sx) + β

1
s f(γ

1
s y)

= α
1
s f(γ

1
sx+ (1− γ)

1
s .0) + β

1
s f(γ

1
s y + (1− γ)

1
s .0)

≤ α
1
s

[
γ

1
s2 f(x) + (1− γ)

1
s2 f(0)

]
+ β

1
s

[
γ

1
s2 f(y) + (1− γ)

1
s2 f(0)

]
= α

1
sγ

1
s2 f(x) + β

1
sγ

1
s2 f(y) + (α

1
s + β

1
s )(1− γ)

1
s2 f(0)

≤ α
1
sγ

1
s2 f(x) + β

1
sγ

1
s2 f(y)

= λ
1
s f(x) + µ

1
s f(y).

Theorem 2.13. Let 0 < s1 ≤ s2 ≤ 1, f : R+ → R be an increasing function,
g : U → R+ be a function and g(0) = 0. If f ∈ K3

s1
and g ∈ K3

s2
, then f ◦ g ∈ K3

s1
.

Proof. Let x, y ∈ U and λ, µ ≥ 0 with λs1 + µs1 = 1. According to Theorem 2.12
and using λs2 + µs2 ≤ λs1 + µs1 = 1, we have

(f ◦ g)(λx+ µy) = f(g(λx+ µy))

≤ f(λ
1
s2 g(x) + µ

1
s2 g(y))

≤ f(λg(x) + µg(y))

≤ λ
1
s1 (f ◦ g)(x) + µ

1
s1 (f ◦ g)(y),

which means that f ◦ g ∈ K3
s1

.

Theorem 2.14. Let 0 < s1 ≤ s2 ≤ 1. If f : U → (−∞, 0] and f ∈ K3
s2

, then
f ∈ K3

s1
.

Proof. Let f ∈ K3
s2

, x, y ∈ U and λ, µ ≥ 0 with λs1 + µs1 = 1. Then we have

λs2 + µs2 ≤ λs1 + µs1 = 1.

Since U is s-convex set, it includes the origin. According to Theorem 2.12, we have

f(λx+ µy) ≤ λ
1
s2 f(x) + µ

1
s2 f(y) ≤ λ

1
s1 f(x) + µ

1
s1 f(y).

That means f ∈ K3
s1

.
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