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Abstract
The present article endeavours to develop partial optional randomized - response technique (PORT) to deal

with sensitive issues in presence of non-response in successive sampling. Calibration techniques have been
embedded with PORT to estimate sensitive population mean at current move in two move successive sampling in
presence of non-response. Optimum calibration weights are computed at each move with the aid of constraints
based on auxiliary information. Detailed properties of the proposed estimators have been discussed. Possible
cases in which non-response may creep at two moves has been explored. The proposed technique has been
compared with the modified existing technique. Simulation results indicate that the proposed technique is more
efficient than existing, modified one. Suitable recommendations are forwarded.
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calibration estimators, non-response, population mean, auxiliary information

1. Introduction

In many social surveys, people often do not respond genuinely when socially sensitive questions are
asked. To account for this behaviour, different techniques were introduced by many statisticians to
reduce no reporting, under-reporting or over reporting.

The sensitive issues may be matters of medical/legal malpractices, addiction of drugs, crimi-
nal conviction, induced abortions, acid attacks, domestic violence, etc. Two widely practised indi-
rect questioning techniques dealing with these issues are randomized response technique (RRT) and
scrambled response technique (SRT) that protect the privacy of respondents and mask the sensitive
response, thereby motivating the respondents to give accurate response.

Warner (1965) was the first to provide such a randomizing model and followed by sizeable lit-
erature was added by Horvitz et al. (1967), Greenberg et al. (1971), Christofides (2003), Kim and
Elam (2007), Wu et al. (2008), Yan et al. (2009), Arnab (2011), Diana and Perri (2011), Arnab et al.
(2012). The SRT was initiated by Pollock and Bek (1976). Further, Eichhorn and Hayre (1983), Saha
(2007), Diana and Perri (2010, 2011), Perri and Diana (2013) and Hussain and Al-Zahrani (2016)
added substantive literature in this area. In RRT or SRT the respondent need to provide random-
ized or scrambled response. However, depending on the thought of respondents it might be possible
that some issue may be sensitive to one respondent but the same issue may not be sensitive to other.
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Hence, to address these problems optional randomized response technique (ORT) may be used. ORT
can be classified into two categories: full optional randomized response technique (FORT) and par-
tial optional randomized response technique (PORT). The ORT is more efficient than compulsory
randomized response technique (CRT) because the probability of obtaining true responses in ORT
is much higher than that in the CRT (Arnab, 2004). PORT was discussed by many authors such as
Mangat and Singh(1994), Gupta et al. (2002, 2013), Pal (2008), Chaudhuri and Dihidar (2009), and
Sanaullah et al. (2020).

It is common that the sensitive variable may be dynamic over time, in such a situation one point
survey may not be sufficient. Continuous monitoring of sensitive variable may be required. The dy-
namics of such sensitive variables may be studied using successive sampling. Addressing the sensitive
variable, Arnab and Singh (2013), Yu et al. (2015), Naeem and Shabbir (2016), Singh et al. (2017),
Priyanka et al. (2018), Priyanka and Trisandhya (2019a, 2019b), Priyanka et al. (2019), Singh et al.
(2018) contributed rich literature. These researchers used simple random sampling design in succes-
sive sampling and used either RRT or SRT to deal with sensitive issues. However, no attempt has been
made to estimate sensitive population mean using PORT in successive sampling.

Generally, all sample surveys are affected by the problem of non-response. When the issues are
sensitive, then they are more prone to occur and can severely affect the validity and generalizability of
the results. Non-response are generally of two types namely unit non-response and item non-response.
In unit non-response, sampled unit fails to respond completely, however in item non-response, the
sampled unit responds to the survey but fails to respond to a particular question.

Hence, before proceeding with any method the kind of non-response creeping in the survey must
be identified and suitable measure must be devices.

Therefore, in this paper an attempt has been made to estimate sensitive population mean at current
move using PORT with calibration weighting to adjust unit non-response in two move successive
sampling. A new model for PORT has been proposed and the existing model by Sanaullah et al.
(2020) have been modified to work as PORT model for successive sampling. The paper is structured
as follows, in Section 2, the proposed PORT models on two successive moves have been presented
along with the calibration estimators in presence of unit non-response at both the moves for the coded
response variable at current move. In Section 3, the asymptotic behaviour of the estimators developed
in previous section have been studied. Section 4 is devoted to discuss the study under simple random
sampling without replacement. In Section 5, the possible cases in which the non-response may creep
has been discussed. Section 6 presents the corresponding estimators for sensitive population mean
along with the expression for their variances. Section 7 is dedicated to a simulation study to compare
the precision of the proposed estimators with the usual modified estimator and the comparison of the
proposed PORT models. Finally, Section 8 is devoted to the discussion of result and conclusion.

2. Survey design and development of estimator

2.1. Formulation and notation

A finite population U = (U1,U2, . . . ,UN) of N identifiable units is considered for sampling over two
moves. The size of population is constant while the value of units do change over the moves. Let
the sensitive study character be denoted by y1 the first move and y2 the second move. It is assumed
that the information on non-sensitive auxiliary variable x,whose population mean is known and stable
over moves, is readily available on both the moves. In two moves successive sampling, we intend to
focus on the probability design to draw relevant samples on different moves under unit non-response
for the estimation of population mean of sensitive variable. At the first move, a sample sn of size n is
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Table 1: Inclusion probabilities

Size First order inclusion probability Second order inclusion probability
r1 π1i =

∑
i∈sr1

Pd1 (sr1 ) π1i j =
∑

i, j∈sr1
Pd1 (sr1 )

m πi |sr1 =
∑

i∈sm Pd2 (sm) πi j |sr1 =
∑

i, j∈sm Pd2 (sm)

r2 πi =
∑

i∈sr2
Pd3 (sr2 ) πi j =

∑
i, j∈sr2

Pd3 (sr2 )

Table 2: Sample design basic weights

Response Set Size Sampling design basic weight for selecting ith unit in corresponding sample
sr1 r1 α1i = 1

π1i

sm m α∗i = 1
π1iπi|sr1

sr2 r2 β∗i = 1
(π1i)cπi |sc

n

drawn with the design d1 having probability pd1 (sn). We assume that sr1 of size r1 be the response set
from sn; sr1 ⊂ sn ⊂ U, having probability pd1 (sr1 ). A random sub-sample sm of m units from sr1 (the
set of responding units at first move) are preserved with design d2 having the probability pd2 (sm) to be
used at current move. Next, an unmatched sample su of size u is drawn afresh (without replacement)
at second move with the design d3 having probability pd3 (su). Let the response set r2 of size sr2 is
obtained from su; sr2 ⊂ su ⊂ (U− sn) having the probability pd3 (sr2 ). Let S 1 and S 2 be two scrambling
variables that will be used to code the response for the sensitive variables. It is assumed that two
scrambling variables are independent of each other and their mean and variance are known. Further,
let z1(z2) be the coded response variable corresponding to sensitive variables y1(y2) on two moves.
The first order and second order positive inclusion probabilities for different samples on two moves
are shown in Table 1 and sampling design basic weights are presented in Table 2.

Let the known mean and variance of scrambling variables be assumed as E(S 1) = S̄ 1, E(S 2) = S̄ 2,
V(S 1) = σ2

S 1
, V(S 2) = σ2

S 2
.

Based on the considered sampling design, we intend to apply partial optional randomization tech-
nique (PORT) on successive moves to handle sensitivity of study variable.

2.2. Partial optional randomization technique on successive moves

Motivated by recent work of Sanaullah et al. (2020), we intend to modify their generalized randomised
response model to be applicable for successive sampling under PORT. The model is modified as,

• PORT-I: Modified model (Sanaullah et al., 2020)

The response obtained from the jth respondent on first and second move are respectively given as,

z1 j =

{
y1 j, with probability p,
y1 jS 1 j + aS 2 j, with probability (1 − p), (2.1)

z2 j =

{
y2 j, with probability p,
y2 jS 1 j + aS 2 j, with probability (1 − p), (2.2)

where a ∈ (−∞, ∞) is a suitable constant chosen by the investigator (Himmelfarb and Edgell, 1980).
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Taking expectation on both sides of equation (2.1) and (2.2) respectively, we get

Z̄1 = pȲ1 + (1 − p)
[
Ȳ1S̄ 1 + aS̄ 2

]
,

Z̄2 = pȲ2 + (1 − p)
[
Ȳ2S̄ 1 + aS̄ 2

]
.

Therefore, the population mean of sensitive variable at current move is given as

Ȳ2 =
Z̄2 − (1 − p) aS̄ 2

p + (1 − p) S̄ 1
, (2.3)

such that

ρz1z2 =
p2

(
ρy1y2σy1σy2

)
+ 2p (1 − p)

(
ρy1y2σy1σy2 S̄ 1

)
+ (1 − p)2

[(
ρy1y2σy1σy2

) (
σ2

s1
+ S̄ 2

1

)
+ Ȳ1Ȳ2σ

2
s1

]
√

I1
√

I2
,

ρz1y1 =

(
p + (1 − p)S̄ 1

)
σy1

√
I1

,

ρz2y2 =

(
p + (1 − p)S̄ 1

)
σy2

√
I2

,

I1 = p2σ2
y1

+ (1 − p)2
[
σ2

y1

(
σ2

s1
+ S̄ 2

1

)
+ σ2

s1
Ȳ2

1 + a2σ2
s2

]
,

I2 = p2σ2
y2

+ (1 − p)2
[
σ2

y2

(
σ2

s1
+ S̄ 2

1

)
+ σ2

s1
Ȳ2

2 + a2σ2
s2

]
.

• PORT-II: Proposed model
Since the modified Sanaullah et al. (2020) model involves an unknown constant to be chosen by

the investigator. This selection of constant may involve an added source of randomness in the model.
Hence, we intend to propose a model for PORT on successive moves which is independent of arbitrary
chosen constant. The response received from the jth respondent under the proposed PORT model on
first and second move are respectively given as

z1 j =

 y1 j, with probability p,
y1 jS 1 j+S 2 j−S̄ 2

S̄ 1
with probability (1 − p),

(2.4)

z2 j =

 y2 j, with probability p,
y2 jS 1 j+S 2 j−S̄ 2

S̄ 1
, with probability (1 − p).

(2.5)

On taking expectation on both sides of equation (2.4), we observe that

E(z1 j) = pE[y1 j] + (1 − p)E
[
y1 js1 j + s2 j − S̄ 2

S̄ 1

]
,

= pȲ1 + (1 − p)
[
Ȳ1 +

S̄ 2

S̄ 1
−

S̄ 2

S̄ 1

]
,

=⇒ Z̄1 = Ȳ1.

Similarly, taking expectations on both the sides of equation (2.5) we get the population mean of
sensitive variable at current move as

Ȳ2 = Z̄2, (2.6)
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such that

ρz1z2 =
p2(ρy1y2σy1σy2 ) + p(1 − p)

[
2ρy1y2σy1σy2 + Ȳ1Ȳ2

]
+ (1 − p)2 [I3]

√
I4
√

I5
,

I3 =

(
ρy1y2σy1σy2 + Ȳ1Ȳ2

) (
σ2

s1
+ S̄ 2

1

)
+ σ2

s2
+ S̄ 2

2 + σ2
s2
/n

σ2
s1
/n + S̄ 2

1

+ S̄ 2Ȳ2 − Ȳ1Ȳ2,

ρz1y1 =
pσ2

y1
+ (1 − p)σ2

y1

σy1

√
I4

,

ρz2y2 =
pσ2

y2
+ (1 − p)σ2

y2

σy2

√
I5

,

I4 = p2σ2
y1

+ (1 − p)2


(
σ2

s1
+ S̄ 2

1

) (
σ2

y1
+ Ȳ2

1

)
σ2

s1
/n + S̄ 2

1

− Ȳ2
1 +

σ2
s2

+ S̄ 2
2

σ2
s1
/n + S̄ 2

1

−
σ2

s2
/n + S̄ 2

2

σ2
s1
/n + S̄ 2

1

 + 2p(1 − p)σ2
y1
,

I5 = p2σ2
y2

+ (1 − p)2


(
σ2

s1
+ S̄ 2

1

) (
σ2

y2
+ Ȳ2

2

)
σ2

s1
/n + S̄ 2

1

− Ȳ2
2 +

σ2
s2

+ S̄ 2
2

σ2
s1
/n + S̄ 2

1

−
σ2

s2
/n + S̄ 2

2

σ2
s1
/n + S̄ 2

1

 + 2p(1 − p)σ2
y2
.

Remark 1. The mean and variance of sensitive variable at current move in two move successive
sampling are obtained in terms of mean of coded response variable. Hence, efficient estimators need
to be investigated to estimate coded response variable so that the estimate of sensitive variable get
improved and became more effective. Hence, in next section we investigate the suitable estimators for
coded response variable in presence of non-response at both the moves.

Remark 2. Since the study character is sensitive in nature. Even though the investigator try so hard,
there will always be scope for some non-response. Hence, in order to deal with non-response, calibra-
tion technique applied over successive moves may be a good alternative. The calibration technique
becomes more effective if auxiliary information is available and in successive sampling the infor-
mation from previous move may also be used as an auxiliary information at current move together
with the availability of additional auxiliary variable. Hence, in the next section a weighted calibra-
tion estimator for coded response variable have been proposed to adjust the effect due to presence of
non-response.

2.3. Calibration estimator for coded response variable

Devil and Särndal (1992) invoked calibration technique in survey sampling, which is proved to be an
efficient technique to adjust non-response by Lundström and Särndal (1999). Therefore, calibration
technique has been used to adjust non-response with the aid of an additional auxiliary variable to
estimate coded response variable which will be further used to estimate population mean of sensitive
variable.

2.3.1. Calibration estimator based on fresh sample

Let the basic design weight β∗i be replaced by the new weight wr2 . Hence, for the estimation of
sensitive population mean at current move, the proposed calibration estimator T̂ NR

cu based on fresh
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sample of size u is given as

T̂ NR
cu =

1
N

∑
i∈sr2

wr2i z2i, (2.7)

In order to obtain the calibrated weight wr2i , we minimize the chi-square type function

∑
i∈sr2

(
wr2i − β

∗
i

)2

quiβ
∗
i

, (2.8)

subject to calibration constraint

1
N

∑
i∈sr2

wr2i xi = X̄, (2.9)

with qui being known positive constant unrelated to β∗i , xi and X̄. This results in to calibrated weights
given by

wr2i = β∗i + β∗i quiN


(
X̄ − 1

N
∑

i∈sr2
β∗i xi

)
xi∑

i∈sr2
quiβ

∗
i x2

i

 . (2.10)

After substituting the calibrated weights wr2i in equation (2.7) we obtain the final calibrated esti-
mator T̂ NR

cu as,

T̂ NR
cu =

 1
N

∑
i∈sr2

β∗i z2i + b̂u

X̄ −
1
N

∑
i∈sr2

β∗i xi


 , (2.11)

with

b̂u =

∑
i∈sr2

β∗i quix2
i


−1 ∑

i∈sr2

β∗i quixiz2i

 ,
where qui being known positive constant unrelated to β∗i and X̄.

2.3.2. Calibration estimator based on matched sample

In successive sampling, to ameliorate the performance of the estimators on the current move, it is quo-
tidian practice to use the information collected on the first move as auxiliary information in addition
to availability of additional non-sensitive auxiliary variable. The calibration estimator in presence of
non-response is proposed based on sample of size m at current (second) move with the new calibrated
weights as

T̂ NR
cm =

1
N

∑
i∈sm

wmiz2i. (2.12)
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To find the calibrated weight wmi, we minimize the chi-square function

∑
i∈sm

(
wmi − α

∗
i

)2

qmiα
∗
i

, (2.13)

subject to calibration constraints

1
N

∑
i∈sm

wmiz1i = z̄∗NR
1n , (2.14)

1
N

∑
i∈sm

wmixi = X̄, (2.15)

with qmi as known positive constant unrelated to α∗i and X̄. Following similar procedure, we obtain
the calibrated estimator for z̄∗NR

1n based on sample sr1 , the response set obtained from sn drawn at first
move as

z̄∗NR
1n =

 1
N

∑
i∈sr1

α1iz1i +

X̄ −
1
N

∑
i∈sr1i

α1ixi

 b̂n

 , (2.16)

with

b̂n =

∑
i∈sr1

α1iqnix2
i


−1 ∑

i∈sr1

α1iqnixiz1i

 ,
where qni is known positive constant unrelated to α1i and X̄.

Now, minimizing the chi-square function in equation (2.13) subject to constraints in equation
(2.14) and (2.15) lead to the calibrated weights given by

wmi = α∗i +

 1
N

xiα
∗
i qmi


X̄ −

1
N

∑
i∈sm

α∗i xi


∑

i∈sm

α∗i qmiz2
1i

 −
z̄∗NR

1n −
1
N

∑
i∈sm

α∗i z1i


∑

i∈sm

α∗i qmiz1ixi




+
1
N

z1iqmiα
∗
i


z̄∗NR

1n −
1
N

∑
i∈sm

α∗i z1i


∑

i∈sm

α∗i qmix2
i

−
X̄−

1
N

∑
i∈sm

α∗i xi


∑

i∈sm

α∗i qmiz1ixi



 b̂m, (2.17)

where

b̂m =


∑

i∈sm

α∗i qmi(z1i)2


 1

N2

∑
i∈sm

α∗i qmix2
i

 − 1
N2

∑
i∈sm

α∗i qmiz1ixi

2
−1

.

Substituting the calibrated weight wmi in equation (2.12), the final proposed calibrated estimator T̂ NR
cm

based on sample size m at current move becomes

T̂ NR
cm =

 1
N

∑
i∈sm

α∗i z2i + b̂m1

z̄∗NR
1n −

1
N

∑
i∈sm

α∗i z1i

 + b̂m2

X̄ −
1
N

∑
i∈sm

α∗i xi


 , (2.18)
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with

b̂m1 =

 1
N2

∑
i∈sm

α∗i qmiz1iz2i



∑

i∈sm

α∗i qmix2
i

 −
∑

i∈sm

α∗i qmiz1ixi


 b̂m,

b̂m2 =

 1
N2

∑
i∈sm

α∗i qmixiz2i



∑

i∈sm

α∗i qmi(z1i)2

 −
∑

i∈sm

α∗i qmiz1ixi


 b̂m,

qmi being known positive constant unrelated to α∗i and z̄∗NR
1n .

2.3.3. Combined calibrated estimator

The final calibrated estimator in presence of non-response at both moves is considered as convex
linear combination of the two calibrated estimators T̂ NR

cu and T̂ NR
cm respectively and is given as,

T̂ NR
c = φT̂ NR

cu + (1 − φ)T̂ NR
cm , (2.19)

where T̂ NR
cu and T̂ NR

cm are given in equation (2.11) and (2.18) respectively and φ ∈ [0, 1] is a scalar
quantity to be chosen suitably.

3. Asymptotic variance

This section is dedicated to elaboration of asymptotic properties of proposed calibration estimator
T̂ NR

c . Since, the estimator T̂ NR
c depends on the estimators T̂ NR

cu and T̂ NR
cm given in equation (2.11) and

(2.18) respectively, so we first discuss the asymptotic properties of T̂ NR
cu and T̂ NR

cm . In addition, the
results suggested by Randles (1982), may be used to discuss the asymptotic variance of estimators.

Proposition 1. The asymptotic behaviour of the calibrated estimator T̂ NR
cu is same as that of

T̂ NR
cu|b =

1
N

∑
i∈sr2

β∗i z2i +

X̄ −
1
N

∑
i∈sr2

β∗i xi

 b, (3.1)

with

b =

∑
i∈sr2

quix2
i


−1 ∑

i∈sr2

quixiz2i

 . (3.2)

Proof: Assuming,

T̂ NR
cu (γ) =

1
N

∑
i∈sr2

β∗i z2i +

X̄ −
1
N

∑
i∈sr2

β∗i xi

 γ, (3.3)

for any variable γ, equation (3.3) shows T̂ NR
cu (γ) is the calibration estimator T̂ NR

cu when b̂u in equa-
tion(2.11) is replaced by γ. Therefore, the limiting mean of T̂ NR

cu (γ) when the actual parameter value
is b, given in equation (3.2), can be written as

µ(γ) = lim
u→+∞

Eb

[
T̂ NR

cu (γ)
]

= Z̃2, (3.4)
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where Z̃2 is the limiting value of Z̄2 as N → ∞. Using Randles (1982), the estimator T̂ NR
cu has the same

asymptotic behaviour as that of the estimator in equation (3.1). 2

Proposition 2. The variance of the estimator T̂ NR
cu|b in equation (3.1) is given by

V
(
T̂ NR

cu|b

)
=

 1
N2

∑
i∈U

∑
j∈U

∆i j
z2i

(πi)c

z2 j

(π j)c

 + E1

 1
N2

∑
i∈(sn)c

∑
j∈(sn)c

∆i j|(sn)c

(π1i)c(π1 j)c

ei

πi|sc
n

e j

π j|sc
n

 , (3.5)

where ei = z2i − xib, ∆i j = πi j − πiπ j, ∆i j|(sn)c = πi j|(sn)c − πi|(sn)cπ j|(sn)c and E1 is the expectation
under the design d1.

Proof: Since the estimator T̂ NR
cu|b is unbiased, so its variance is given by

V(T̂ NR
cu|b) = V1

(
E3

[
T̂ NR

cu|b

])
+ E1

[
V3

(
T̂ NR

cu|b

)]
, (3.6)

where E1 and V1 are the expectation and variance under the design d1 respectively, and E3 and V3
represent the conditional expectation and conditional variance under design d3 respectively

V1

(
E3

[
T̂ NR

cu|b

])
= V1

 1
N

∑
i∈sr2

β∗i z2i

 =
1

N2

∑
i∈U

∑
j∈U

∆i j
z2i

(πi)c

z2 j

(π j)c . (3.7)

Now,

E1

[
V3

(
T̂ NR

cu|b

)]
= E1

V3


 1

N

∑
i∈sr2

β∗i z2i

 +

X̄ −
1
N

∑
i∈sr2

β∗i xi

 b




= E1

V3

 1
N

∑
i∈sr2

β∗i z2i −
1
N

∑
i∈sr2

β∗i xib




= E1

V3

 1
N

∑
i∈sr2

β∗i ei




= E1

 1
N2

∑
i∈(sn)c

∑
j∈(sn)c

∆i j|(sn)c

(π1i)c(π1 j)c

ei

πi|sc
n

e j

π j|(sn)c

 . (3.8)

Using equation (3.7) and (3.8) in equation (3.6), we get the expression for variance as in equation
(3.5). 2

Remark 3. From Proposition 1 and Proposition 2, the estimator T̂ NR
cu and T̂ NR

cm are asymptotically
unbiased and their asymptotic variances are given as

V
(
T̂ NR

cu

)
=

1
N2

∑
i∈U

∑
j∈U

∆i j
z2i

(πi)c

z2 j

(π j)c

 +
1

N2 E1

 ∑
i∈(sn)c

∑
j∈(sn)c

∆i j|(sn)c

(π1i)c(π1 j)c

ei

πi|(sn)c

e j

π j|(sn)c

 . (3.9)
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Similarly,

V
(
T̂ NR

cm

)
=

1
N2

∑
i∈U

∑
j∈U

∆
′

i j
z2i

(πi)c

z2 j

(π j)c

 +
1

N2 E2

∑
i∈sr1

∑
j∈sr1

∆i j|sr1

π1iπ1 j

ei

πi|sr1

e j

π j|sr1

 , (3.10)

where ∆
′

i j = π1i j − π1iπ1 j and E2 is the expectation under the design d2.

Proposition 3. The asymptotic variance of proposed calibration estimator is obtained as

V
(
T̂ NR

c

)
= φ2V

(
T̂ NR

cu

)
+ (1 − φ)2 V

(
T̂ NR

cm

)
, (3.11)

where V(T̂ NR
cu ) and V(T̂ NR

cm ) are given in equation (3.9) and (3.10) respectively.

Proof: The asymptotic variance of calibration estimator T̂ NR
c is given by

V
(
T̂ NR

c

)
= E

[
T̂ NR

c − Z̄2

]2
,

= E
[
φT̂ NR

cu + (1 − φ) T̂ NR
cm − Z̄2

]2
,

= φ2V
(
T̂ NR

cu

)
+ (1 − φ)2 V

(
T̂ NR

cm

)
+ 2φ (1 − φ) cov

(
T̂ NR

cu , T̂ NR
cm

)
. (3.12)

The values of T̂ NR
cu and T̂ NR

cm have been computed in equation (3.9) and (3.10) respectively and
as the estimators V(T̂ NR

cu ) and V(T̂ NR
cm ) are based on two non-overlapping samples of sizes u and m

respectively. So, cov(T̂ NR
cu , T̂

NR
cm ) = 0. By using these values in equation (3.12), we have the expression

for the asymptotic variance of the calibrated estimator in presence of non-response as in equation
(3.11). 2

Remark 4. From the equation (3.11), it can be concluded that, V(T̂ NR
c ) is a function of unknown

constant φ. Therefore, it is optimized with respect to φ and subsequently the optimum value of φ is
obtained as

φopt. =
V

(
T̂ NR

cm

)
V

(
T̂ NR

cu

)
+ V

(
T̂ NR

cm

) . (3.13)

Substituting the value of φ(opt.) from equation (3.13) in (3.11), we get the optimum variance of the
proposed estimator T̂ NR

c as

V
(
T̂ NR

c

)
opt.

=
V

(
T̂ NR

cu

)
× V

(
T̂ NR

cm

)
V

(
T̂ NR

cu

)
+ V

(
T̂ NR

cm

) . (3.14)

4. Study under simple random sampling without replacement sampling design

In this section, calibration estimator in presence of non-response has been considered for simple
random sampling without replacement (SRSWOR) design on both the moves. For that the relevant
suppositions are given as

π1i =
r1

N
, π1i j =

r1(r1 − 1)
N(N − 1)

.
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Because the sample sn is drawn from U with SRSWOR of size n, it implies that the complement,
sc

n = U − sn is a simple random sample without replacement of size N − n, therefore we have

πc
1i =

N − n
N

, πc
1i j =

(N − n)(N − n − 1)
N(N − 1)

.

Also, we suppose that the matched sample sm is drawn from sr1 , with SRSWOR of size m so

πi|sr1
=

m
r1
, πi j|sr1

=
m(m − 1)
r1(r1 − 1)

.

Finally, the unmatched sample su is drawn from sc
n with SRSWOR of size u. Thus, we have

πi|sc
n =

r2

N − r2
, πi j|sc

n =
r2(r2 − 1)

(N − n)(N − n − 1)

Now, based on sample of size r2 on current move, the proposed calibration estimator T̂ NR
cu under

SRSWOR sampling design becomes

T̂ NR
cu (s) =

[
z̄2u + b̂u(s)(X̄ − x̄u)

]
, (4.1)

with

b̂u(s) =

∑
i∈sr2

quix2
i


−1 ∑

i∈sr2

quixiz2i

 .
Similarly, based on sample of size m on current move, the proposed calibration estimator T̂ NR

cm under
SRSWOR scheme is obtained as

T̂ NR
cm (s) =

[
z̄2m + b̂m1(s)(z̄∗NR

1n (s) − z̄1m) + b̂m2(s)(X̄ − x̄m)
]
. (4.2)

with

b̂m1(s) =

∑
i∈sm

qmiz1iz2i



∑

i∈sm

qmix2
i

 −
∑

i∈sm

qmiz1ixi


 b̂m(s),

b̂m2(s) =

∑
i∈sm

qmixiz2i



∑

i∈sm

qmi(z1i)2

 −
∑

i∈sm

qmiz1ixi


 b̂m(s),

b̂m(s) =


∑

i∈sm

qmi(z1i)2


∑

i∈sm

qmix2
i

 −
∑

i∈sm

qmiz1ixi

2
−1

,

z̄∗NR
1n (s) =

[
z̄1n + b̂n(s)(X̄ − x̄n)

]
,

b̂n(s) =

∑
i∈sr1

qnix2
i


−1 ∑

i∈sr1

qnixiz1i

 .
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Now, the estimator T̂ NR
c (s) becomes

T̂ NR
c (s) = φsT̂ NR

cu (s) + (1 − φs)T̂ NR
cm (s), (4.3)

where T̂ NR
cu (s) and T̂ NR

cm (s) are given in equation (4.1) and (4.2) respectively and φsε[0, 1] is a scalar
quantity to be chosen suitably.

Remark 5. Further if we assume, qui = qni = qmi = 1 in T̂ NR
c , then the calibration estimator T̂ NR

c be
denoted as T̂ ∗NR

c .

Remark 6. The proposed calibration estimator have been compared with general successive sam-
pling estimator in presence of non-response at both the moves, so the general successive sampling
estimator have been modified for estimation of coded response variable and is given as

T̂ NR
g = ΨgT̂ NR

gu +
(
1 − Ψg

)
T̂ NR

gm ,whereΨg ∈ [0, 1], (4.4)

with T̂ NR
gu = z̄2r2 , T̂

NR
gm = z̄2m + βz2z1

(
z̄1r1 − z̄1m

)
βz2z1 =

S z2z1
S 2

z1
.

5. Possible cases

There might be a possibility that non-response may occur only at current move or only at previous
move or there may be no non-response at any move. Therefore, in order to retain similar estimators
in all possible situations, the calibration technique have been retained and possible modifications
has been done in the constraints as per the situation and calibration estimators in different possible
situations have been obtained, which are described in following cases.

5.1. Case-I: when there is non-response only at current move

In this situation the proposed estimator T̂ NR
c of the coded response variable Z̄2 changes to

T̂ NR
c1

= Ψ1T̂ NR
cu + (1 − Ψ1)T̂cm; Ψ1 ∈ [0, 1], (5.1)

where the estimator T̂cm can be obtained by replacing r1 by n in equation (2.16) and other equations
that depends on it and T̂ NR

cu is defined in equation (2.11).

5.2. Case-II: when there is non-response only at first (previous) move

In the presence of non-response only at first (previous) move, the estimator T̂ NR
c of the coded response

variable Z̄2 changes to

T̂ NR
c2

= Ψ2T̂cu + (1 − Ψ2)T̂ NR
cm ; Ψ2 ∈ [0, 1], (5.2)

where the estimator T̂cu can be obtained by replacing r2 by u in equation (2.11) and other equations
that depends on it and T̂ NR

cm is defined in equation (2.18).

5.3. Case-III: when there is no non-response at any move

In the presence of no non-response at any move, the estimator T̂ NR
c of the coded response variable Z̄2

changes to

T̂c3 = Ψ3T̂cu + (1 − Ψ3)T̂cm; Ψ3 ∈ [0, 1], (5.3)
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Table 3: Estimators of sensitive population mean and their variances

Estimators Variance

PORT-I

ˆ̄Y2c =
T̂ ∗NR

c −(1−p)aS̄ 2
p+(1−p)S̄ 1

V[ ˆ̄Y2c] =
V(T̂ ∗NR

c )opt.
[p+(1−p)S̄ 1]2

ˆ̄Y2g =
T̂ NR

g −(1−p)aS̄ 2
p+(1−p)S̄ 1

V[ ˆ̄Y2g] =
V(T̂ NR

g )opt.

[p+(1−p)S̄ 1]2

ˆ̄Y2c1 =
T̂ NR

c1
−(1−p)aS̄ 2

p+(1−p)S̄ 1
V[ ˆ̄Y2c1 ] =

V(T̂ NR
c1

)opt.

[p+(1−p)S̄ 1]2

ˆ̄Y2c2 =
T̂ NR

c2
−(1−p)aS̄ 2

p+(1−p)S̄ 1
V[ ˆ̄Y2c2 ] =

V(T̂ NR
c2

)opt.

[p+(1−p)S̄ 1]2

ˆ̄Y2c3 =
T̂c3−(1−p)aS̄ 2

p+(1−p)S̄ 1
V[ ˆ̄Y2c3 ] =

V(T̂c3 )opt.

[p+(1−p)S̄ 1]2

PORT-II

ˆ̄Y∗2c = T̂ ∗NR
c V[ ˆ̄Y∗2c] = V(T̂ ∗NR

c )opt.

ˆ̄Y∗2g = T̂ NR
g V[ ˆ̄Y∗2g] = V(T̂ NR

g )opt.

ˆ̄Y∗2c1
= T̂ NR

c1
V[ ˆ̄Y∗2c1

] = V(T̂ NR
c1

)opt.

ˆ̄Y∗2c2
= T̂ NR

c2
V[ ˆ̄Y∗2c2

] = V(T̂ NR
c2

)opt.
ˆ̄Y∗2c3

= T̂c3 V[ ˆ̄Y∗2c3
] = V(T̂c3 )opt.

where the estimator T̂cu can be obtained by replacing r2 by u in equation (2.11) and T̂cm can be
obtained by replacing r1 by n in equation (2.16) and other equations that depends on it and T̂ NR

cm is
defined in equation (2.18).

6. Estimators for sensitive population mean under PORT

Replacing the population mean of coded response variable Z̄2 in equation (2.3) and (2.6) by its estima-
tors T̂ ∗NR

c , T̂ NR
g , T̂ NR

c1
, T̂ NR

c2
and T̂c3 , the respective estimators for sensitive population mean at current

move becomes ˆ̄Y2c,
ˆ̄Y2g,

ˆ̄Y2c1 ,
ˆ̄Y2c2 and ˆ̄Y2c3 under PORT-I model and ˆ̄Y∗2c,

ˆ̄Y∗2g,
ˆ̄Y∗2c1

, ˆ̄Y∗2c2
and ˆ̄Y∗2c3

under
PORT-II model respectively, which are presented in Table 3.

Remark 7. For the considered model in equation (2.3) and (2.6), the two scrambling variables S̄ 1
and S̄ 2 used to perturb the true response through the PORT models may follow any distribution in
two move successive sampling. Hence, following Pollock and Bek (1976) and Eichhorn and Hayre
(1983), we consider scrambling variable S 1 to follow normal distribution with mean 0 and variance
1. However, the scrambling variable S 2 has been assumed to follow normal distribution with mean 1
and variance 1.

7. Simulation study

In this section, a simulation study has been carried out to reveal the behaviour of the proposed esti-
mators. For this purpose, a natural population has been considered from statistical abstracts of United
States. The considered population comprise of N = 51 states, which is described as: y1 : Rate of
abortion in 2007 y2 : Rate of abortion in 2008 x : Rate of abortion in 2005. As discussed in Remark 6,
the scrambling variables S 1 ∼ N(0, 1) and S 2 ∼ N(1, 1). The data for S 1 and S 2 have been generated
by MATLAB software.
To judge the performance of both the PORT models under the proposed calibration estimators in
presence of non-response to estimate the sensitive population mean in two move successive sampling,
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we have studied the behaviour of the estimators by considering different choices for rate of non-
response at both moves. For simulation, 10, 000 independent replications of considered sampling
design in two move successive sampling via MATLAB have been considered. All the samples are
obtained under simple random sampling without replacement. An environment through simulation
process has been created for non-response by assuming non-response rates as 10%, 20%, and 30% at
both the moves.

The entire simulation has been replicated for different values of n,m and u which are considered
as different sets given as

S et − I : n = 20; m = 12; u = 8, S et − II : n = 20; m = 10; u = 10.

Calibration estimators have been compared with general successive sampling estimator under both
the considered PORT models in terms of percent relative efficiency (PRE), which are given as

PRE 1 =
MSE

( ˆ̄Y2g

)
MSE

( ˆ̄Y2c

) × 100,

PRE 2 =
MSE

( ˆ̄Y∗2g

)
MSE

( ˆ̄Y∗2c

) × 100,

where MSE( ˆ̄Y2g) = 1/10, 000
10,000∑

i=1
[ ˆ̄Y2gi − Ȳ2]2. Similarly, MSE( ˆ̄Y∗2ght), MSE( ˆ̄Y2c) and MSE( ˆ̄Y∗2c) can

be computed. The simulation results have been represented in Tables 4–5 respectively. Further, in
order to identify the better PORT model, the percent relative efficiency (PRE) of calibration estimator
under PORT-I with respect to calibration estimator under PORT-II have been computed as

PRE 3 =
MSE

( ˆ̄Y2c

)
MSE

( ˆ̄Y∗2c

) × 100,

where MSE( ˆ̄Y2c) = 1/10, 000
∑10,000

i=1 [ ˆ̄Y2ci−Ȳ2]2 and similarly, MSE( ˆ̄Y∗2c) can be computed. The results
are presented in Figures 1–2.

8. Discussion of results and conclusion

Following interpretation can be drawn from the simulation results presented in Tables 4–5 and also in
Figures 1–2.

(i) From Tables 4–5, it is observed that the proposed calibration estimator is performing better than
general successive sampling estimator in the presence of non-response at both the moves under
PORT-I as well as PORT-II models. This shows that the use of calibration technique to adjust
the effect due to non-response is fruitful.

(ii) Figures 1–2 show that the calibration estimator under proposed PORT-II model is better than
the same calibration estimator under PORT-I model for all considered choices of constants and
non-response rates.

(iii) It is also observed from Figures 1–2 that for the fixed value of p, the PRE3 first increases up
to Ψ = 0.5, then decreases for Ψ > 0.5. This shows that if more weight is attached to
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Table 4: Percent relative efficiency of ˆ̄Y2g with respect to ˆ̄Y2c for different sets and different choices of
non-response (NR) rates under PORT-I where Ψ ∈ {φ,Ψg}

Ψ p

SET-I SET-II
NR = 10% NR = 20% NR = 30% NR = 10% NR = 20% NR = 30%

PRE1 PRE1 PRE1 PRE1 PRE1 PRE1
a = −10 a = −19 a = −10 a = −19 a = −10 a = −19 a = −10 a = −19 a = −10 a = −19 a = −10 a = −19

0.3 110.7 137.9 178.6 137.2 175.8 140.4 100.5 138.1 109.1 136.7 136.1 135.6
0.5 152.7 173.3 152.4 173.0 251.9 172.12 156.3 174.2 155.0 173.4 151.6 172.6

0.1 0.7 362.6 196.9 349.1 195.1 336.4 198.6 342.6 191.0 315.7 192.9 315.1 189.1
0.9 319.1 387.3 372.9 419.4 406.2 436.2 158.0 234.2 201.7 227.8 181.4 255.1
0.3 120.4 118.4 103.5 107.8 120.0 146.4 115.6 118.5 115.0 117.5 132.3 106.4
0.5 140.9 148.9 138.8 148.1 137.1 146.5 141.1 178.6 141.7 138.2 140.1 137.2

0.3 0.7 302.5 173.8 292.7 173.1 286.7 174.1 295.9 171.6 289.8 172.0 281.7 172.1
0.9 309.9 355.2 332.3 413.2 428.3 435.9 185.2 246.1 207.1 224.7 239.0 277.9
0.3 110.4 106.5 116.5 105.2 113.8 100.0 100.4 100.1 108.3 109.6 116.5 118.6
0.5 128.6 163.6 126.4 122.4 124.7 181.3 129.6 123.6 128.6 142.8 127.4 134.5

0.5 0.7 244.7 150.3 234.5 149.6 231.0 152.0 243.0 150.2 237.2 151.9 234.9 152.2
0.9 405.7 378.5 366.0 410.2 454.6 448.2 219.4 298.1 231.9 277.7 249.5 232.5
0.3 112.3 113.9 109.1 171.8 108.5 70.4 103.9 183.8 102.5 112.7 100.6 101.7
0.5 115.8 119.0 114.7 186.9 113.4 85.5 117.6 118.6 118.0 108.3 116.0 117.1

0.7 0.7 184.9 129.1 179.3 228.9 174.8 127.3 187.0 130.2 185.0 129.4 182.3 230.2
0.9 424.1 325.7 413.4 339.3 423.6 353.0 261.6 285.2 293.1 287.6 303.4 287.4
0.3 100.0 97.2 94.0 184.9 102.0 183.2 100.1 100.1 102.0 186.9 100.0 135.7
0.5 105.3 102.7 104.3 191.6 102.5 189.8 107.3 103.7 105.9 193.1 105.0 192.2

0.9 0.7 134.7 108.4 132.0 208.4 131.0 207.3 233.4 109.4 135.1 209.1 133.7 209.3
0.9 355.8 220.9 349.9 223.7 341.7 231.6 334.2 204.1 327.2 211.8 328.7 217.0

Table 5: Percent relative efficiency of ˆ̄Y∗2g with respect to ˆ̄Y∗2c for different sets and different choices of
non-response (NR) rates under PORT-II where Ψ ∈ {φ,Ψg}

Ψ p
SET-I SET-II

NR = 10% NR = 20% NR = 30% NR = 10% NR = 20% NR = 30%
PRE2 PRE2 PRE2 PRE2 PRE2 PRE2

0.3 142.0 144.7 160.1 130.6 131.2 140.6
0.5 177.0 208.1 235.0 239.0 244.4 257.5

0.1 0.7 277.7 339.0 456.8 900.6 154.3 396.4
0.9 3809.6 4150.1 5548.5 1578.5 1523.0 2549.4
0.3 152.6 161.8 183.6 126.1 126.6 129.9
0.5 214.2 209.0 252.0 254.2 356.8 462.4

0.3 0.7 389.2 363.9 453.9 460.0 488.0 568.5
0.9 3420.2 4141.8 4400.8 1504.1 1849.2 2485.5
0.3 185.2 197.5 117.7 136.7 249.1 163.4
0.5 253.0 259.3 259.7 148.7 396.0 188.4

0.5 0.7 304.9 326.2 338.3 225.1 582.8 228.0
0.9 2408.2 2407.6 2181.4 1582.8 1622.9 1960.6
0.3 135.9 137.9 132.8 107.9 113.2 106.6
0.5 173.1 161.4 159.0 137.5 134.5 164.0

0.7 0.7 247.0 229.0 207.2 213.4 224.5 212.8
0.9 1015.5 931.2 784.2 1204.8 1035.5 1012.1
0.3 148.5 134.4 122.9 167.8 162.8 150.0

0.57 155.3 142.5 131.0 193.9 180.3 155.7
0.9 0.7 173.7 165.0 144.8 224.6 193.5 176.4

0.9 388.4 350.2 300.6 496.8 428.5 387.6

matched sample than PRE is higher as compared to the situation when more weight is attached
to unmatched/fresh sample at current move. These results are in accordance with the theory of



508 Kumari Priyanka, Pidugu Trisandhya, Ajay Kumar

Figure 1: PRE of the calibration estimator under PORT-I with respect to the calibration estimator under PORT-II
for different choices of non-response rates and varying φ for a = −15.

Figure 2: PRE of the calibration estimator under PORT-I with respect to the calibration estimator under PORT-II
for different choices of non-response rates and varying φ for a = −19.

successive sampling.

(iv) Figures 1–2 also shows that higher percent relative efficiency is observed for larger value of p
i.e., PRE3 in general increased as p increases.

8.1. Conclusion

The estimation of sensitive population mean at current move in two move successive sampling is
feasible using PORT. The calibration technique applied to adjust the effect due to non-response is
proved to be fruitful under both the considered models. The proposed model PORT-II is coming out
to be more efficient than the modified Sanaullah et al. (2020) model (PORT-I) on successive moves.
Therefore, it is concluded that the proposed PORT model may be used for the estimation of sensitive
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population mean at current move in two move successive sampling.
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