DOI QR코드

DOI QR Code

Sustainable structural lightweight concrete utilizing high-volume fly ash cenosphere

  • Majhi, Rajib K. (Department of Civil Engineering, Centurion University of Technology and Management) ;
  • Patel, Sudeep K. (Department of Civil Engineering, Veer Surendra Sai University of Technology) ;
  • Nayak, Amar N. (Department of Civil Engineering, Veer Surendra Sai University of Technology)
  • 투고 : 2020.06.18
  • 심사 : 2021.08.06
  • 발행 : 2021.09.25

초록

This paper explores the most feasible technique for producing sustainable structural lightweight concrete (LWC) utilizing high-volume of fly ash cenosphere (FAC), a noble lightweight fine material, as replacement of natural fine aggregate (NFA) with addition of silica fume (SF) as replacement of ordinary Portland cement (OPC). Concrete mixes are designed for different combinations of FAC (60%, 80% and 100%), SF (10%, 15% and 20%) and water-binder (W/B) ratio (0.40, 044 and 0.48) and their mechanical and physical properties are evaluated. Experimental results depict that appropriate dose of SF improves the properties of high-volume FAC based concrete and thus helps in the production of structural LWC satisfying strength and density criteria of ACI 213R-14 (2014). The combinations of 15% SF with 80% FAC at 0.44 and 0.40 W/B ratios result in the properties closer to or even better than the normal concrete. Moreover, the environmental impacts of the concrete mixes comprised of high-volume FAC with addition of SF at different W/B ratio reduce in the range 5.37%-18.86% with respect to the normal concrete. Hence, the structural LWC mixes become sustainable, as they are advantageous from both environmental and social considerations.

키워드

과제정보

The authors received funding from "Science and Engineering Research Board (SERB), Government of India vide Grant No. SB/S3/CEE/0065/2013 dated 06/05/2015" for this research work.

참고문헌

  1. ACI 213R-14 (2014), Guide for Structural Lightweight-Aggregate Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  2. ASTM C642-13 (2013), Standard Test Method for Density, Absorption, Voids in Hardened Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  3. Blanco, F., Garcia, P., Mateos, P. and Ayala, J. (2000), "Characteristics and properties of lightweight concrete manufactured with cenospheres", Cement Concrete Res., 30(11), 1715-1722. http://doi.org/10.1016/S0008-8846(00)00357-4.
  4. BS EN 934-2 (2009), Admixtures for Concrete, Mortar and Grout, British Standards, United Kingdom.
  5. Central Electricity Authority (2018), "Report on fly ash generation at coal/lignite based thermal power stations and its utilization in the country", New Delhi, October. http://www.cea.nic.in/reports/others/thermal/tcd/flyash_201718.pdf.
  6. Chandra, S. and Berntsson, L. (2002), Lightweight Aggregate Concrete: Science, Technology and Applications (Building Materials Science Series), William Andrew Inc., New York.
  7. Chen, P., Wang, J., Liu, F., Qian, X., Xu, Y. and Li, J. (2018), "Converting hollow fly ash into admixture carrier for concrete", Constr. Build. Mater., 159, 431-439. http://doi.org/10.1016/j.conbuildmat.2017.10.122.
  8. Danish, A. and Mosaberpanah, M.A. (2020), "Formation mechanism and applications of cenospheres: a review", J. Mater. Sci., 1-19. http://doi.org/10.1007/s10853-019-04341-7.
  9. Das, A. and Satapathy, B.K. (2011), "Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites", Mater. Des., 32(3), 1477-1484. http://doi.org/10.1016/j.matdes.2010.08.041.
  10. Dehdezi, P.K., Erdem, S. and Blankson, M.A. (2015), "Physicomechanical, microstructural and dynamic properties of newly developed artificial fly ash based lightweight aggregate-Rubber concrete composite", Compos. Part B Eng., 79, 451-455. http://doi.org/10.1016/j.compositesb.2015.05.005.
  11. Habert, G., De Lacaillerie, J.D.E. and Roussel, N. (2011), "An environmental evaluation of geopolymer based concrete production: reviewing current research trends", J. Clean. Prod., 19(11), 1229-1238. http://doi.org/10.1016/j.jclepro.2011.03.012.
  12. Hanif, A., Diao, S., Lu, Z, Fan, T. and Li, Z. (2016), "Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres-mechanical and thermal insulating properties", Constr. Build. Mater., 116, 422-430. http://doi.org/10.1016/j.conbuildmat.2016.04.134.
  13. Hanif, A., Lu, Z. and Li, Z. (2017a), "Utilization of fly ash cenosphere as lightweight filler in cement-based composites-a review", Constr. Build. Mater., 144, 373-384. http://doi.org/10.1016/j.conbuildmat.2017.03.188.
  14. Hanif, A., Lu, Z., Diao, S., Zeng, X. and Li, Z. (2017c), "Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers", Constr. Build. Mater., 140, 139-149. http://doi.org/10.1016/j.conbuildmat.2017.02.093.
  15. Hanif, A., Parthasarathy, P., Lu, Z., Sun, M. and Li, Z. (2017b), "Fiber-reinforced cementitious composites incorporating glass cenospheres-mechanical properties and microstructure", Constr. Build. Mater., 154, 529-538. http://doi.org/10.1016/j.conbuildmat.2017.07.235.
  16. Huang, X., Ranade, R., Zhang, Q., Ni, W. and Li, V.C. (2013), "Mechanical and thermal properties of green lightweight engineered cementations composites", Constr. Build. Mater., 48, 954-960. http://doi.org/10.1016/j.conbuildmat.2013.07.104.
  17. Huang, Z., Padmaja, K., Li, S. and Liew, J.R. (2018), "Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures", Constr. Build. Mater., 164, 760-774. http://doi.org/10.1016/j.conbuildmat.2018.01.009.
  18. Huda, M.N., Jumaat, M.Z., Islam, A.B.M., Obaydullah, M. and Hosen, M.A. (2017), "Palm oil industry's bi-products as coarse aggregate in structural lightweight concrete", Comput. Concrete, 19, 515-526. https://doi.org/10.12989/cac.2017.19.5.515.
  19. IS 516 (1959), Indian Standard Methods of Tests for Strength Concrete, Bureau of Indian Standards, New Delhi, India.
  20. IS 5816 (1999), Indian Standard Splitting Tensile Strength of Concrete-Method of Test, Bureau of Indian Standards, New Delhi, India.
  21. IS: 10262 (2009), Indian Standard Concrete Mix Proportioning-Guidelines, Bureau of Indian Standards, New Delhi, India.
  22. IS: 10500 (2012), Indian Standard Drinking Water-Specification, Bureau of Indian Standards, New Delhi, India.
  23. IS: 15388 (2003), Indian Standard Silica Fume Specification, Bureau of Indian Standards, New Delhi, India.
  24. IS: 383 (1970), Indian Standard Specification for Coarse and Fine Aggregate from Natural Sources, Bureau of Indian Standards, New Delhi, India.
  25. IS: 269 (2015), Indian Standard for Ordinary Portland Cement Specification, Bureau of Indian Standards, New Delhi, India.
  26. Justo-Reinoso, I., Srubar III, W.V., Caicedo-Ramirez, A. and Hernandez, M.T. (2018), "Fine aggregate substitution by granular activated carbon can improve physical and mechanical properties of cement mortars", Constr. Build. Mater., 164, 750-759. http://doi.org/10.1016/j.conbuildmat.2017.12.181.
  27. Kockal, N.U. and Ozturan, T. (2010), "Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes", J. Hazard. Mater., 179(1-3), 954-965. http://doi.org/10.1016/j.jhazmat.2010.03.098.
  28. Kockal, N.U. and Ozturan, T. (2011), "Durability of lightweight concretes with lightweight fly ash aggregates", Constr. Build. Mater., 25(3), 1430-1438. http://doi.org/10.1016/j.conbuildmat.2010.09.022.
  29. Kolay, P.K. and Singh, D.N.P. (2001), "Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon", Cement Concrete Res., 31(4), 539-542. http://doi.org/10.1016/S0008-8846(01)00457-4.
  30. Kurda, R., Silvestre, J.D. and de Brito, J. (2018), "Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review", Heliyon, 4(4), e00611. http://doi.org/10.1016/j.heliyon.2018.e00611.
  31. Kwan, A.K.H. and Chen, J.J. (2013), "Adding fly ash microsphere to improve packing density, flowability and strength of cement paste", Powder Tech., 234, 19-25. http://doi.org/10.1016/j.powtec.2012.09.016.
  32. Langan, B.W., Weng, K. and Ward, M.A. (2002), "Effect of silica fume and fly ash on heat of hydration of Portland cement", Cement Concrete Res., 32(7), 1045-1051. http://doi.org/10.1016/S0008-8846(02)00742-1.
  33. Larbi, J.A. and Bijen, J.M. (1990), "Effects of water-cement ratio, quantity and fineness of sand on the evolution of lime in set Portland cement systems", Cement Concrete Res., 20(5), 783-794. http://doi.org/10.1016/0008-8846(90)90012-M.
  34. Liu, X., Zhang, M.H., Chia, K.S., Yan, J. and Liew, J.Y.R. (2016), "Mechanical properties of ultralightweight cement composite at low temperatures of 0 to -60℃", Cement Concrete Compos., 73, 289-298. http://doi.org/10.1016/j.cemconcomp.2016.05.014.
  35. Losiewicz, M., Halsey, D.P., Dews, J.S., Olomaiye, P. and Harris, F.C. (1997), "An investigation into the properties of the microsphere insulating concrete", Constr. Build. Mater., 10(8), 583-588. http://doi.org/10.1016/S0950-0618(96)00022-0.
  36. Mazloom, M., and Mahboubi, F. (2017), "Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete", Comput. Concrete, 19, 203-210. http://doi.org/http://dx.doi.org/10.12989/cac.2017.19.2.203.
  37. McBride, S.P., Shukla, A. and Bose, A. (2002), "Processing and characterization of a lightweight concrete using cenospheres", J. Mater. Sci., 37(19), 4217-4225. http://doi.org/10.1023/A:1020056407402.
  38. Mo, K.H., Lee, H.J., Liu, M.Y.J. and Ling, T.C. (2018), "Incorporation of expanded vermiculite lightweight aggregate in cement mortar", Constr. Build. Mater., 179, 302-306. http://doi.org/10.1016/j.conbuildmat.2018.05.219.
  39. Montgomery, D. and Diamond, S. (1984), "The influence of fly ash cenospheres on the details of cracking in fly ash-bearing cement pastes", Cement Concrete Res., 14(6), 767-775. http://doi.org/10.1016/0008-8846(84)90001-2.
  40. Patel, S.K. and Nayak, A.N. (2021), "Study on specific compressive strength of concrete with fly ash cenosphere", Recent Developments in Sustainable Infrastructure, Springer, Singapore.
  41. Patel, S.K., Majhi, R.K., Satpathy, H.P. and Nayak, A.N. (2019), "Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate", Constr. Build. Mater., 226, 579-590. http://doi.org/10.1016/j.conbuildmat.2019.07.304.
  42. Patel, S.K., Satpathy, H.P., Nayak, A.N. and Mohanty, C.R. (2020), "Utilization of fly ash cenosphere for production of sustainable lightweight concrete", J. Inst. Eng. Ser. A, 101(1), 179-194. http://doi.org/10.1007/s40030-019-00415-6.
  43. Pundiene, I. and Pranckeviciene, J. (2020), "The synergistic effect of adding a blend of deflocculants and microsilica on the properties of high temperature resistant lightweight concrete with cenospheres", Constr. Build. Mater., 230, 116961. http://doi.org/10.1016/j.conbuildmat.2019.116961.
  44. Satpathy, H.P., Patel, S.K. and Nayak, A.N. (2019), "Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate", Constr. Build. Mater., 202, 636-655. http://doi.org/10.1016/j.conbuildmat.2019.01.034.
  45. Shoaei, P., Zolfaghary, S., Jafari, N., Dehestani, M. and Hejazi, M. (2017), "Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete", Adv. Concrete Constr., 5, 101-115. http://doi.org/10.12989/acc.2017.5.2.101.
  46. Souza, F.B.D., Montedo, O.R.K., Grassi, R.L. and Antunes, E.G. P. (2019), "Lightweight high-strength concrete with the use of waste cenosphere as fine aggregate", Materia (Rio de Janeiro), 24(4), 1-12. http://doi.org/10.1590/s1517-707620190004.0834.
  47. Tang, C.W. (2017), "Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete", Comput. Concrete, 19, 69-78. https://doi.org/10.12989/cac.2017.19.1.069.
  48. Tiwari, V., Arun, S. and Bose, A. (2004), "Acoustic properties of cenosphere reinforced cement and asphalt concrete", Appl. Acoust., 65(3), 263-275. http://doi.org/10.1016/j.apacoust.2003.09.002.
  49. Wang, H.Y., Hsiao, D.H. and Wang, S.Y. (2012), "Properties of recycled green building materials applied in lightweight aggregate concrete", Comput. Concrete, 10, 95-104. http://doi.org/10.12989/cac.2012.10.2.095.
  50. Wang, H.Y., Li, L.S., Chen, S.H., and Weng, C.F. (2009), "Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing", Comput. Concrete, 6, 225-234. http://doi.org/10.12989/cac.2009.6.3.225.
  51. Wang, H.Y., Sheen, Y.N. and Hung, M.F. (2010), "Performance characteristics of dredged silt and high-performance lightweight aggregate concrete", Comput. Concrete, 7, 53-62. http://doi.org/10.12989/cac.2010.7.1.053.
  52. Wang, J.Y., Yang, Y., Liew, J.Y.R. and Zhang, M.H. (2014), "Method to determine mixture proportions of workable ultra-lightweight cement composites to achieve target unit weights", Cement Concrete Compos., 53, 178-186. http://doi.org/10.1016/j.cemconcomp.2014.07.006.
  53. Wu, Y., Wang, J.Y., Monteiro, P.J.M. and Zhang, M.H. (2015), "Development of ultralightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings", Constr. Build. Mater., 87, 100-112. http://doi.org/10.1016/j.conbuildmat.2015.04.004.
  54. Xi, B., Zhou, Y., Yu, K., Hu, B., Huang, X., Sui, L. and Xing, F. (2020), "Use of nano-SiO2 to develop a high performance green lightweight engineered cementitious composites containing fly ash cenospheres" J. Clean. Prod., 121274. http://doi.org/10.1016/j.jclepro.2020.121274.
  55. Yogendran, V., Langan, B.W. and Ward, M.A. (1991), "Hydration of cement and silica fume paste", Cement Concrete Res., 21(5), 691-708. http://doi.org/10.1016/0008-8846(91)90164-D.
  56. Zhou, H. and Brooks, A.L. (2019), "Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres", Constr. Build. Mater., 198, 512-526. http://doi.org/10.1016/j.conbuildmat.2018.11.074.