과제정보
The authors received funding from "Science and Engineering Research Board (SERB), Government of India vide Grant No. SB/S3/CEE/0065/2013 dated 06/05/2015" for this research work.
참고문헌
- ACI 213R-14 (2014), Guide for Structural Lightweight-Aggregate Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- ASTM C642-13 (2013), Standard Test Method for Density, Absorption, Voids in Hardened Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- Blanco, F., Garcia, P., Mateos, P. and Ayala, J. (2000), "Characteristics and properties of lightweight concrete manufactured with cenospheres", Cement Concrete Res., 30(11), 1715-1722. http://doi.org/10.1016/S0008-8846(00)00357-4.
- BS EN 934-2 (2009), Admixtures for Concrete, Mortar and Grout, British Standards, United Kingdom.
- Central Electricity Authority (2018), "Report on fly ash generation at coal/lignite based thermal power stations and its utilization in the country", New Delhi, October. http://www.cea.nic.in/reports/others/thermal/tcd/flyash_201718.pdf.
- Chandra, S. and Berntsson, L. (2002), Lightweight Aggregate Concrete: Science, Technology and Applications (Building Materials Science Series), William Andrew Inc., New York.
- Chen, P., Wang, J., Liu, F., Qian, X., Xu, Y. and Li, J. (2018), "Converting hollow fly ash into admixture carrier for concrete", Constr. Build. Mater., 159, 431-439. http://doi.org/10.1016/j.conbuildmat.2017.10.122.
- Danish, A. and Mosaberpanah, M.A. (2020), "Formation mechanism and applications of cenospheres: a review", J. Mater. Sci., 1-19. http://doi.org/10.1007/s10853-019-04341-7.
- Das, A. and Satapathy, B.K. (2011), "Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites", Mater. Des., 32(3), 1477-1484. http://doi.org/10.1016/j.matdes.2010.08.041.
- Dehdezi, P.K., Erdem, S. and Blankson, M.A. (2015), "Physicomechanical, microstructural and dynamic properties of newly developed artificial fly ash based lightweight aggregate-Rubber concrete composite", Compos. Part B Eng., 79, 451-455. http://doi.org/10.1016/j.compositesb.2015.05.005.
- Habert, G., De Lacaillerie, J.D.E. and Roussel, N. (2011), "An environmental evaluation of geopolymer based concrete production: reviewing current research trends", J. Clean. Prod., 19(11), 1229-1238. http://doi.org/10.1016/j.jclepro.2011.03.012.
- Hanif, A., Diao, S., Lu, Z, Fan, T. and Li, Z. (2016), "Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres-mechanical and thermal insulating properties", Constr. Build. Mater., 116, 422-430. http://doi.org/10.1016/j.conbuildmat.2016.04.134.
- Hanif, A., Lu, Z. and Li, Z. (2017a), "Utilization of fly ash cenosphere as lightweight filler in cement-based composites-a review", Constr. Build. Mater., 144, 373-384. http://doi.org/10.1016/j.conbuildmat.2017.03.188.
- Hanif, A., Lu, Z., Diao, S., Zeng, X. and Li, Z. (2017c), "Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers", Constr. Build. Mater., 140, 139-149. http://doi.org/10.1016/j.conbuildmat.2017.02.093.
- Hanif, A., Parthasarathy, P., Lu, Z., Sun, M. and Li, Z. (2017b), "Fiber-reinforced cementitious composites incorporating glass cenospheres-mechanical properties and microstructure", Constr. Build. Mater., 154, 529-538. http://doi.org/10.1016/j.conbuildmat.2017.07.235.
- Huang, X., Ranade, R., Zhang, Q., Ni, W. and Li, V.C. (2013), "Mechanical and thermal properties of green lightweight engineered cementations composites", Constr. Build. Mater., 48, 954-960. http://doi.org/10.1016/j.conbuildmat.2013.07.104.
- Huang, Z., Padmaja, K., Li, S. and Liew, J.R. (2018), "Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures", Constr. Build. Mater., 164, 760-774. http://doi.org/10.1016/j.conbuildmat.2018.01.009.
- Huda, M.N., Jumaat, M.Z., Islam, A.B.M., Obaydullah, M. and Hosen, M.A. (2017), "Palm oil industry's bi-products as coarse aggregate in structural lightweight concrete", Comput. Concrete, 19, 515-526. https://doi.org/10.12989/cac.2017.19.5.515.
- IS 516 (1959), Indian Standard Methods of Tests for Strength Concrete, Bureau of Indian Standards, New Delhi, India.
- IS 5816 (1999), Indian Standard Splitting Tensile Strength of Concrete-Method of Test, Bureau of Indian Standards, New Delhi, India.
- IS: 10262 (2009), Indian Standard Concrete Mix Proportioning-Guidelines, Bureau of Indian Standards, New Delhi, India.
- IS: 10500 (2012), Indian Standard Drinking Water-Specification, Bureau of Indian Standards, New Delhi, India.
- IS: 15388 (2003), Indian Standard Silica Fume Specification, Bureau of Indian Standards, New Delhi, India.
- IS: 383 (1970), Indian Standard Specification for Coarse and Fine Aggregate from Natural Sources, Bureau of Indian Standards, New Delhi, India.
- IS: 269 (2015), Indian Standard for Ordinary Portland Cement Specification, Bureau of Indian Standards, New Delhi, India.
- Justo-Reinoso, I., Srubar III, W.V., Caicedo-Ramirez, A. and Hernandez, M.T. (2018), "Fine aggregate substitution by granular activated carbon can improve physical and mechanical properties of cement mortars", Constr. Build. Mater., 164, 750-759. http://doi.org/10.1016/j.conbuildmat.2017.12.181.
- Kockal, N.U. and Ozturan, T. (2010), "Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes", J. Hazard. Mater., 179(1-3), 954-965. http://doi.org/10.1016/j.jhazmat.2010.03.098.
- Kockal, N.U. and Ozturan, T. (2011), "Durability of lightweight concretes with lightweight fly ash aggregates", Constr. Build. Mater., 25(3), 1430-1438. http://doi.org/10.1016/j.conbuildmat.2010.09.022.
- Kolay, P.K. and Singh, D.N.P. (2001), "Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon", Cement Concrete Res., 31(4), 539-542. http://doi.org/10.1016/S0008-8846(01)00457-4.
- Kurda, R., Silvestre, J.D. and de Brito, J. (2018), "Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review", Heliyon, 4(4), e00611. http://doi.org/10.1016/j.heliyon.2018.e00611.
- Kwan, A.K.H. and Chen, J.J. (2013), "Adding fly ash microsphere to improve packing density, flowability and strength of cement paste", Powder Tech., 234, 19-25. http://doi.org/10.1016/j.powtec.2012.09.016.
- Langan, B.W., Weng, K. and Ward, M.A. (2002), "Effect of silica fume and fly ash on heat of hydration of Portland cement", Cement Concrete Res., 32(7), 1045-1051. http://doi.org/10.1016/S0008-8846(02)00742-1.
- Larbi, J.A. and Bijen, J.M. (1990), "Effects of water-cement ratio, quantity and fineness of sand on the evolution of lime in set Portland cement systems", Cement Concrete Res., 20(5), 783-794. http://doi.org/10.1016/0008-8846(90)90012-M.
- Liu, X., Zhang, M.H., Chia, K.S., Yan, J. and Liew, J.Y.R. (2016), "Mechanical properties of ultralightweight cement composite at low temperatures of 0 to -60℃", Cement Concrete Compos., 73, 289-298. http://doi.org/10.1016/j.cemconcomp.2016.05.014.
- Losiewicz, M., Halsey, D.P., Dews, J.S., Olomaiye, P. and Harris, F.C. (1997), "An investigation into the properties of the microsphere insulating concrete", Constr. Build. Mater., 10(8), 583-588. http://doi.org/10.1016/S0950-0618(96)00022-0.
- Mazloom, M., and Mahboubi, F. (2017), "Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete", Comput. Concrete, 19, 203-210. http://doi.org/http://dx.doi.org/10.12989/cac.2017.19.2.203.
- McBride, S.P., Shukla, A. and Bose, A. (2002), "Processing and characterization of a lightweight concrete using cenospheres", J. Mater. Sci., 37(19), 4217-4225. http://doi.org/10.1023/A:1020056407402.
- Mo, K.H., Lee, H.J., Liu, M.Y.J. and Ling, T.C. (2018), "Incorporation of expanded vermiculite lightweight aggregate in cement mortar", Constr. Build. Mater., 179, 302-306. http://doi.org/10.1016/j.conbuildmat.2018.05.219.
- Montgomery, D. and Diamond, S. (1984), "The influence of fly ash cenospheres on the details of cracking in fly ash-bearing cement pastes", Cement Concrete Res., 14(6), 767-775. http://doi.org/10.1016/0008-8846(84)90001-2.
- Patel, S.K. and Nayak, A.N. (2021), "Study on specific compressive strength of concrete with fly ash cenosphere", Recent Developments in Sustainable Infrastructure, Springer, Singapore.
- Patel, S.K., Majhi, R.K., Satpathy, H.P. and Nayak, A.N. (2019), "Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate", Constr. Build. Mater., 226, 579-590. http://doi.org/10.1016/j.conbuildmat.2019.07.304.
- Patel, S.K., Satpathy, H.P., Nayak, A.N. and Mohanty, C.R. (2020), "Utilization of fly ash cenosphere for production of sustainable lightweight concrete", J. Inst. Eng. Ser. A, 101(1), 179-194. http://doi.org/10.1007/s40030-019-00415-6.
- Pundiene, I. and Pranckeviciene, J. (2020), "The synergistic effect of adding a blend of deflocculants and microsilica on the properties of high temperature resistant lightweight concrete with cenospheres", Constr. Build. Mater., 230, 116961. http://doi.org/10.1016/j.conbuildmat.2019.116961.
- Satpathy, H.P., Patel, S.K. and Nayak, A.N. (2019), "Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate", Constr. Build. Mater., 202, 636-655. http://doi.org/10.1016/j.conbuildmat.2019.01.034.
- Shoaei, P., Zolfaghary, S., Jafari, N., Dehestani, M. and Hejazi, M. (2017), "Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete", Adv. Concrete Constr., 5, 101-115. http://doi.org/10.12989/acc.2017.5.2.101.
- Souza, F.B.D., Montedo, O.R.K., Grassi, R.L. and Antunes, E.G. P. (2019), "Lightweight high-strength concrete with the use of waste cenosphere as fine aggregate", Materia (Rio de Janeiro), 24(4), 1-12. http://doi.org/10.1590/s1517-707620190004.0834.
- Tang, C.W. (2017), "Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete", Comput. Concrete, 19, 69-78. https://doi.org/10.12989/cac.2017.19.1.069.
- Tiwari, V., Arun, S. and Bose, A. (2004), "Acoustic properties of cenosphere reinforced cement and asphalt concrete", Appl. Acoust., 65(3), 263-275. http://doi.org/10.1016/j.apacoust.2003.09.002.
- Wang, H.Y., Hsiao, D.H. and Wang, S.Y. (2012), "Properties of recycled green building materials applied in lightweight aggregate concrete", Comput. Concrete, 10, 95-104. http://doi.org/10.12989/cac.2012.10.2.095.
- Wang, H.Y., Li, L.S., Chen, S.H., and Weng, C.F. (2009), "Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing", Comput. Concrete, 6, 225-234. http://doi.org/10.12989/cac.2009.6.3.225.
- Wang, H.Y., Sheen, Y.N. and Hung, M.F. (2010), "Performance characteristics of dredged silt and high-performance lightweight aggregate concrete", Comput. Concrete, 7, 53-62. http://doi.org/10.12989/cac.2010.7.1.053.
- Wang, J.Y., Yang, Y., Liew, J.Y.R. and Zhang, M.H. (2014), "Method to determine mixture proportions of workable ultra-lightweight cement composites to achieve target unit weights", Cement Concrete Compos., 53, 178-186. http://doi.org/10.1016/j.cemconcomp.2014.07.006.
- Wu, Y., Wang, J.Y., Monteiro, P.J.M. and Zhang, M.H. (2015), "Development of ultralightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings", Constr. Build. Mater., 87, 100-112. http://doi.org/10.1016/j.conbuildmat.2015.04.004.
- Xi, B., Zhou, Y., Yu, K., Hu, B., Huang, X., Sui, L. and Xing, F. (2020), "Use of nano-SiO2 to develop a high performance green lightweight engineered cementitious composites containing fly ash cenospheres" J. Clean. Prod., 121274. http://doi.org/10.1016/j.jclepro.2020.121274.
- Yogendran, V., Langan, B.W. and Ward, M.A. (1991), "Hydration of cement and silica fume paste", Cement Concrete Res., 21(5), 691-708. http://doi.org/10.1016/0008-8846(91)90164-D.
- Zhou, H. and Brooks, A.L. (2019), "Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres", Constr. Build. Mater., 198, 512-526. http://doi.org/10.1016/j.conbuildmat.2018.11.074.