References
- J. R. Park & S. O. Noe. (2018). A study on legal service of AI. Journal of The Korea Society of Computer and Information, 23(7), 105-111. DOI : 10.9708/JKSCI.2018.23.07.105
- Eliot. Lance. (2020). AI and Legal Reasoning Essentials. LBE Press Publishing.
- Baker. J. J. (2018). 2018: A Legal Research Odyssey: Artificial Intelligence as Disruptor. Law Library Journal, 110(Issue 1), 5-30.
- Genesereth. M. (2019). Computational law. Stanford Center for Legal Informatics.
- Markou. C & Deakin. S. (2020). Is Law Computable? From Rule of Law to Legal Singularity. May, 4, 2020. SSRN, University of Cambridge Faculty of Law Research Paper.
- Aleven. V. (2003). Using Background Knowledge in Case-based Legal Reasoning: a Computational model and an Intelligent Learning Environment. Artificial Intelligence, 150(1-2), 183-237. DOI : 10.1016/S0004-3702(03)00105-X
- Hage. J. (2000). Dialectical models in artificial intelligence and law. Artificial Intelligence and Law, 8(2-3), 137-172. https://doi.org/10.1023/A:1008348321016
- Ashley. K., Branting. K, Margolis. H & Sunstein. C. R. (2001). Legal Reasoning and Artificial Intelligence: How Computers "Think" Like Lawyers. University of Chicago Law School Roundtable, 8(1), 1-28.
- El Ghosh. M. (2018). Automation of legal reasoning and decision based on ontologies. Doctoral dissertation. Normandie Universite.
- Ho. J. H., Lee. G. G & Lu. M. T. (2020). Exploring the Implementation of a Legal AI Bot for Sustainable Development in Legal Advisory Institutions. Sustainability, 12(15), 5991. DOI : 10.3390/su12155991
- Mikolov. T., Chen. K., Corrado. G & Dean. J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Mikolov. T., Sutskever. I., Chen. K., Corrado. G. S & Dean. J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, 3111-3119.
- Sahlgren. M. (2008). The distributional hypothesis. Italian Journal of Disability Studies, 20, 33-53.
- Bybee. J. L & Hopper. P. J. (Eds.). (2001). Frequency and the emergence of linguistic structure (Vol. 45). John Benjamins Publishing.
- Steck. H. (2011, October). Item popularity and recommendation accuracy. In Proceedings of the fifth ACM conference on Recommender systems, 125-132.
- Bojanowski. P., Grave. E., Joulin. A & Mikolov. T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135-146. DOI : 10.1162/tacl_a_00051
- Joulin. A., Grave. E., Bojanowski. P & Mikolov. T. (2016). Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759.
- Graves. A & Schmidhuber. J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610. DOI : 10.1016/j.neunet.2005.06.042
- Gers. F. A., Schraudolph. N. N & Schmidhuber. J. (2002). Learning precise timing with LSTM recurrent networks. Journal of machine learning research, 3(Aug), 115-143.
- Graves. A., Mohamed. A. R & Hinton. G. (2013, May). Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing, IEEE, 6645-6649. DOI : 10.1109/ICASSP.2013.6638947