DOI QR코드

DOI QR Code

Trimming conditions for DADA2 analysis in QIIME2 platform

  • Lee, Seo-Young (Interdisplinary Program of Genomic Science, Pusan National University) ;
  • Yu, Yeuni (Interdisplinary Program of Genomic Science, Pusan National University) ;
  • Chung, Jin (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Na, Hee Sam (Department of Oral Microbiology, School of Dentistry, Pusan National University)
  • 투고 : 2021.08.27
  • 심사 : 2021.09.09
  • 발행 : 2021.09.30

초록

Accurate identification of microbes facilitates the prediction, prevention, and treatment of human diseases. To increase the accuracy of microbiome data analysis, a long region of the 16S rRNA is commonly sequenced via paired-end sequencing. In paired-end sequencing, a sufficient length of overlapping region is required for effective joining of the reads, and high-quality sequencing reads are needed at the overlapping region. Trimming sequences at the reads distal to a point where sequencing quality drops below a specific threshold enhance the joining process. In this study, we examined the effect of trimming conditions on the number of reads that remained after quality control and chimera removal in the Illumina paired-end reads of the V3-V4 hypervariable region. We also examined the alpha diversity and taxa assigned by each trimming condition. Optimum quality trimming increased the number of good reads and assigned more number of operational taxonomy units. The pre-analysis trimming step has a great influence on further microbiome analysis, and optimized trimming conditions should be applied for Divisive Amplicon Denoising Algorithm 2 analysis in QIIME2 platform.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT, NRF-2017R1D1A1B03028710).

참고문헌

  1. Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol 2016;18:2103-16. doi: 10.1111/1462-2920.13318.
  2. Panek M, Cipcic Paljetak H, Baresic A, Peric M, Matijasic M, Lojkic I, Vranesic Bender D, Krznaric Z, Verbanac D. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep 2018;8:5143. doi: 10.1038/s41598-018-23296-4.
  3. NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, StarkeReed P, Zakhari S, Read J, Watson B, Guyer M. The NIH Human Microbiome Project. Genome Res 2009;19:2317-23. doi: 10.1101/gr.096651.109.
  4. Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 2007;69:330-9. doi: 10.1016/j.mimet.2007.02.005.
  5. Clarridge JE 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 2004;17:840-62, table of contents. doi: 10.1128/CMR.17.4.840-862.2004.
  6. Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 2019;6:190007. doi: 10.1038/sdata.2019.7.
  7. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012;2012:251364. doi: 10.1155/2012/251364.
  8. Balvociute M, Huson DH. SILVA, RDP, Greengenes, NCBI and OTT - how do these taxonomies compare? BMC Genomics 2017;18(Suppl 2):114. doi: 10.1186/s12864-017-3501-4.
  9. Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019;10:5029. doi: 10.1038/s41467-019-13036-1.
  10. Jeong J, Yun K, Mun S, Chung WH, Choi SY, Nam YD, Lim MY, Hong CP, Park C, Ahn YJ, Han K. The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology. Sci Rep 2021;11:1727. doi: 10.1038/s41598-020-80826-9.
  11. Allaband C, McDonald D, Vazquez-Baeza Y, Minich JJ, Tripathi A, Brenner DA, Loomba R, Smarr L, Sandborn WJ, Schnabl B, Dorrestein P, Zarrinpar A, Knight R. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin Gastroenterol Hepatol 2019;17:218-30. doi: 10.1016/j.cgh.2018.09.017.
  12. Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 2010;11:485. doi: 10.1186/1471-2105-11-485.
  13. Hall M, Beiko RG. 16S rRNA gene analysis with QIIME2. Methods Mol Biol 2018;1849:113-29. doi: 10.1007/978-1-4939-8728-3_8.
  14. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581-3. doi: 10.1038/nmeth.3869.
  15. Mohsen A, Park J, Chen YA, Kawashima H, Mizuguchi K. Impact of quality trimming on the efficiency of reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2 microbiome analysis frameworks. BMC Bioinformatics 2019;20:581. doi: 10.1186/s12859-019-3187-5.
  16. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013;41:e1. doi: 10.1093/nar/gks808.
  17. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol 2010;192:5002-17. doi: 10.1128/JB.00542-10.
  18. Wei LQ, Cheong IH, Yang GH, Li XG, Kozlakidis Z, Ding L, Liu NN, Wang H. The application of high-throughput technologies for the study of microbiome and cancer. Front Genet 2021;12:699793. doi: 10.3389/fgene.2021.699793.
  19. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016;375:2369-79. doi: 10.1056/NEJMra1600266.
  20. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH, McCracken C, Giglio MG, McDonald D, Franzosa EA, Knight R, White O, Huttenhower C. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 2017;550:61-6. doi: 10.1038/nature23889.
  21. Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 2018;9:488-500. doi: 10.1007/s13238-018-0548-1.
  22. Wade WG. The oral microbiome in health and disease. Pharmacol Res 2013;69:137-43. doi: 10.1016/j.phrs.2012.11.006.
  23. Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis 2017;23:276-86. doi: 10.1111/odi.12509.
  24. Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny DM, Gibbs RA, Ajami NJ, Petrosino JF. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 2017;5:153. doi: 10.1186/s40168-017-0373-4.
  25. Na HS, Kim SY, Han H, Kim HJ, Lee JY, Lee JH, Chung J. Identification of potential oral microbial biomarkers for the diagnosis of periodontitis. J Clin Med 2020;9:1549. doi: 10.3390/jcm9051549.
  26. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998;8:186-94. doi: 10.1101/gr.8.3.186.