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Abstract. In this paper the concept of ordered fuzzy filters is introduced
in Heyting almost distributive lattices and the properties of these ordered
fuzzy filters are studied. We characterized and proved a set of theorems of
ordered fuzzy filters. Some topological properties of prime ordered fuzzy
filters are also studied.
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1. Introduction

Swamy and Rao in [9] introduced the notion of an almost aistributive lat-
tices(ADLs). An ADL (L,∧,∨, 0) satisfies all the axioms of distributive lattice,
except possibly the commutativity of operations ∧ and ∨. It is known that, in
any ADL the commutativity of ∨ is equivalent to that of ∧ and also to the right
distributivity of ∨ over ∧. In [4], Rao, Berhanu and Mani introduced the concept
of Heyting almost distributive lattice as a generalization of Heyting algebra in
the class of ADLs. In [8], Rao and Rao introduced the notions of ordered filters
of Heyting almost distributive lattices. Basic properties of prime ordere filters of
Heyting ADLs are also studied by Rao and Rao in [7]. Again, Rao and Rao in [6]
studied some topological properties of Heyting ADLs. On the other hand, fuzzy
set theory was introduced by Zadeh [13]. Later in 1971, Zadeh [14], defined a
fuzzy ordering as a generalization of the concept of ordering. Next, fuzzy groups
were studied by Rosenfield [5]. Many scholars have used this idea to different
mathematical branches such as semi-group, ring, semi-ring, near-ring, lattice
etc. For instance Yuan and Wu [12] introduced the notion of fuzzy sublattice
and fuzzy ideals of lattice.
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More recently, Swamy, Raji and Teshale [10] introduced fuzzy ideals of ADLs.
In adition to this Alaba and Alemayehu [1] studied e-fuzzy filters of MS-algebras
also in [2] Addis studied fuzzy prime spectrum of C-algebras. Again, Swamy,
Raji and Teshale [11] studied L-fuzzy filters of almost distributive lattices.

In this paper, the notion of ordered fuzzy filters is introduced in Heyting
almost distributive lattices(HADLs). Some necessary and sufficient conditions
are derived for a nonempty set of HADL to become an ordered fuzzy filter.
Finally the topological properties of prime ordered fuzzy filters of Heyting almost
distributive lattices are studied.

2. Preliminaries

In this section, we recall basic definitions and results which will be used in
this article.
Definition 2.1. [9] An algebra L = (L,∨,∧, 0) of type (2, 2, 0) is called an
Almost Distributive Lattice (abbreviated as ADL), if it satisfies the following
conditions for all a, b and c ∈ L:

(1) 0 ∧ a = 0,
(2) a ∨ 0 = a,
(3) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
(4) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
(5) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),
(6) (a ∨ b) ∧ b = b.
If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a ≤ b if and only if a = a∧ b

(or equivalently, a ∨ b = b), then ≤ is a partial ordering on L.
Definition 2.2. [9] If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the
following:

(1) a ∨ b = a⇔ a ∧ b = b,
(2) a ∨ b = b⇔ a ∧ b = a,
(3) ∧ is associative in L,
(4) a ∧ b ∧ c = b ∧ a ∧ c,
(5) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(6) a ∧ b = 0 ⇔ b ∧ a = 0,
(7) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
(8) a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a,
(9) a ≤ a ∨ b and a ∧ b ≤ b,
(10) a ∧ a = a and a ∨ a = a,
(11) 0 ∨ a = a and a ∧ 0 = 0,
(12) If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a.
It can be observed that an ADL L satisfies almost all the properties of a

distributive lattice except the right distributivity of ∨ over ∧, commutativity
of ∨, commutativity of ∧. Any one of these properties make an ADL L a
distributive lattice.
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As usual, an element m ∈ L is called maximal if it is a maximal element in
the partially ordered set (L,≤). That is, for any a ∈ L,m ≤ a⇒ m = a.

Theorem 2.3. [9] Let L be an ADL and m ∈ L. Then the following are
equivalent:

(1) m is maximal with respect to ≤,
(2) m ∨ a = m, for all a ∈ L,
(3) m ∧ a = a, for all a ∈ L,
(4) a ∨m is maximal, for all a ∈ L.

Definition 2.4. [4] Let (L,∨,∧, 0,m) be an ADL with 0 and a maximal element
m. Suppose → is abinary operation on L satisfying the following conditions:

(1) a→ a = m,
(2) (a→ b) ∧ b = b,
(3) a ∧ (a→ b) = a ∧ b ∧m,
(4) a→ (b ∧ c) = (a→ b) ∧ (a→ c),
(5) (a ∨ b) → c = (a → c) ∧ (b → c) for all a, b, c ∈ L. Then (L,∨,∧, 0,m)

is called a Heyting ADL.

Definition 2.5. [4] Let (L,∨,∧, 0,m) and (L
′
,∨,∧, 0′

,m
′
) be two HADLs.

Then the mapping f : L → L
′ is called a homomorphism of L into L′ if for

any x, y ∈ L, the following conditions hold:
(1) f(x ∧ y) = f(x) ∧ f(y),
(2) f(x ∨ y) = f(x) ∨ f(y),
(3) f(x→ y) = f(x) → f(y),
(4) f(0) = 0

′ .

Lemma 2.6. [4] Let m be a maximal element in a Heyting ADL L.Then for
any a, b, c ∈ L, the following conditions hold:

(1) b ∧m ≤ (a→ b) ∧m,
(2) a→ (a ∧ c) = a→ c,
(3) a ∧ b ∧m = a ∧ c ∧m⇔ (a→ b) ∧m = (a→ c) ∧m,
(4) a ∧m ≤ b ∧m⇔ (a→ b) ∧m = m,
(5) a ∧ c ∧m ≤ b ∧m⇔ c ∧m ≤ (a→ b) ∧m,
(6) a ∧m ≤ ((a→ b) → b) ∧m,
(7) a ∧m ≤ (b→ c) ∧m⇔ b ∧m ≤ (a→ c) ∧m,
(8) (a→ (b→ c)) ∧m = ((a ∧ b) → c) ∧m,
(9) ((a ∧ b) → c) ∧m = ((b ∧ a) → c) ∧m,
(10) (a→ (b→ c)) ∧m = (b→ (a→ c)) ∧m.

Definition 2.7. [8] Let L be a HADL with a maximal element m. A nonempty
subset F of L is called an ordered filter if it satisfies the following conditions for
all x, y ∈ L:

(1) x, y ∈ F implies x ∧ y ∈ F ,
(2) x ∈ F and x ∧m ≤ y ∧m implies y ∈ F .
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Remember that, for any set S a function µ : S −→ ([0, 1],∧,∨) is called
a fuzzy subset of S, where [0, 1] is a unit interval, α ∧ β = min{α, β} and
α ∨ β = max{α, β} for all α, β ∈ [0, 1].

Definition 2.8. [11] Let λ be a fuzzy subset of an ADL L. For any α ∈ [0, 1],
we denote the level subset λα, i.e

λα = {x ∈ L : α ≤ λ(x)}.

Swamy, Raji and Teshale [11] µ : L −→ L
′ , where L is an ADL and L′ is a

complete lattice satisfing infinite meet distiributive law. Now in our cases take
L

′ as [0, 1].
λ is said to be a fuzzy filter of an ADL L if λα is a filter of L for all α ∈ L.

Theorem 2.9. [11]
Let λ be a fuzzy subset of an ADL L. Then the following are equivalent to

each other.
(1) λ is a fuzzy filter of L,
(2) λ(m) = 1 for all maximal element m and λ(x∧ y) = λ(x)∧ λ(y), for all

x, y ∈ L,
(3) λ(m) = 1 for all maximal element m and λ(x ∨ y) ≥ λ(x) ∨ λ(y) and

λ(x ∧ y) ≥ λ(x) ∧ λ(y), for all x, y ∈ L.

We define the binary operations ” + ” and ”.” on all fuzzy subsets of an
ADL L as: (µ + θ)(x) = sup{µ(a) ∧ θ(b) : a, b ∈ L, a ∨ b = x} and (µ.θ)(x) =
sup{µ(a) ∧ θ(b) : a, b ∈ L, a ∧ b = x}.

The intersection of fuzzy filters of L (FF (L)) is a fuzzy filter. However the
union of fuzzy filters may not be fuzzy filter. The least upper bound of a fuzzy
filters µ and θ of L is denoted as µ ∨ θ = ∩{σ ∈ FF (L) : µ ∪ θ ⊆ σ}. If µ and θ
are fuzzy filters of L, then µ.θ = µ ∨ θ and µ+ θ = µ ∩ θ

In the next sections L stands for a Heyting ADL unless otherwise mentioned.

3. Ordered fuzzy filters of HADLs

In this section, the concept of ordered fuzzy filters is introduced in HADLs
and these fuzzy filters are then characterized. A necessary and sufficient con-
dition is derived for any nonempty set to become an ordered fuzzy filter. The
homomorphic images of ordered fuzzy filters are studied.

Definition 3.1. Let L be a HADL with a maximal element m. A nonempty
fuzzy subset µ of L is called an ordered fuzzy filter if it satisfies the following
conditions for all x, y ∈ L:

(1) µ(x ∧ y) ≥ µ(x) ∧ µ(y),
(2) x ∧m ≤ y ∧m implies µ(y) ≥ µ(x).
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Theorem 3.2. Let L be a HADL with a maximal element m. A nonempty fuzzy
subset µ of L is an ordered fuzzy filter iff the level subset µα, α ∈ [0, 1) is an
ordered filter of L.

Proof. Suppose µ be an ordered fuzzy filter of L. Let x, y ∈ µα. Then µ(x∧y) ≥
µ(x)∧ µ(y) ≥ α. This implies x∧ y ∈ µα. Let x∧m ≤ y ∧m and x ∈ µα. Then
µ(y) ≥ µ(x) ≥ α. This implies y ∈ µα.
Conversely, suppose that µα is an ordered filter of L. Let µ(x)∧µ(y) = α. Then
µ(x) ≥ α and µ(y) ≥ α. This implies x, y ∈ µα and so x ∧ y ∈ µα. Hence
µ(x ∧ y) ≥ α = µ(x) ∧ µ(y). Let x ∧m ≤ y ∧m and µ(x) = α. Then x ∈ µα.
This implies y ∈ µα. Hence µ(y) ≥ µ(x). �

Corollary 3.3. A nonempty subset F of L is an ordered filter if and only if χF
is an ordered fuzzy filter.

Corollary 3.4. Let µ be an ordered fuzzy filter and m be any maximal element
of an HADL L. Then µ(m) = 1.

Proof. Let µ(x) = α for any x ∈ L and α ∈ [0, 1]. Since x ∧m ≤ m = m ∧m,
by Defination 3.1(2) µ(m) ≥ µ(x) = α, α ∈ [0, 1], we have get µ(m) = 1. �

The following Lemma can help us to understand the relation between a fuzzy
filter and an ordered fuzzy filter of L.

Lemma 3.5. Let m be a maximal element of L. Then every fuzzy filter of L is
an ordered fuzzy filter.

Proof. Suppoe that µ is a fuzzy filter of L, µ(x∧y) ≥ µ(x)∧µ(y) for any x, y ∈ L,
and by Corollarly 3.4 , µ(m) = 1. Let x ∧m ≤ y ∧m and µ(x) = α, α ∈ [0, 1].
Then µ(x ∧m) ≥ µ(x) ∧ µ(m) = µ(x) ∧ 1 = µ(x).
Also y ∧ x ∧m = y ∧ x ∧m ∧m = y ∧m ∧ x ∧m = x ∧m. Since µ is a fuzzy
filters of L,

µ(y) = µ(y ∨ (y ∧ x ∧m))

≥ µ(y) ∨ µ(y ∧ x ∧m)

≥ µ(y ∧ x ∧m)

= µ(x ∧m)

≥ µ(x)

This implies every fuzzy filter of L is an ordered fuzzy filter. �

Example 3.6. The set M◦ of all maximal elements of L. χM◦ is an ordered
fuzzy filter.

Theorem 3.7. Let m be a maximal element of L and µ a non-empty fuzzy
subset of L. Then µ is an ordered fuzzy filter of L if and only if it satisfies the
following properties.

(1) µ(m) = 1,
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(2) µ(y) ≥ µ(x→ y) ∧ µ(x) for all x, y ∈ L.

Proof. Suppose that µ is an ordered fuzzy filter of L. Then clearly µ(m) = 1.
Since x ∧ y ∧ m = x ∧ (x 7→ y) and x ∧ y ∧ m ∧ m = x ∧ y ∧ m ≤ y ∧ m,
µ(y) ≥ µ(x ∧ y ∧m) = µ(x ∧ (x 7→ y)) ≥ µ(x) ∧ µ(x 7→ y).
Conversely, suppose (1) and (2) holds true. Since L is an HADL. Then for any
x, y ∈ L, y 7→ (x 7→ (x ∧ y)) = m. Now by condition (2)

µ(x ∧ y) ≥ µ(x) ∧ µ(x 7→ (x ∧ y))
and

µ(x 7→ (x ∧ y)) ≥ µ(y) ∧ µ(y 7→ (x 7→ (x ∧ y))) = µ(y) ∧ µ(m) = µ(y).

Thus by these two equations we have get
µ(x ∧ y) ≥ µ(x) ∧ µ(y).

Let x ∧m ≤ y ∧m. Then x → y = m. Now by condition (2), µ(y) ≥ µ(x →
y) ∧ µ(x) = µ(m) ∧ µ(x) = µ(x)

Hence µ is an ordered fuzzy filter of L. �
Theorem 3.8. Let m be a maximal element of L and µ be a non-empty fuzzy
subset of L. Then µ is an ordered fuzzy filter if and only if x∧m ≤ (y 7→ z)∧m
implies µ(z) ≥ µ(x) ∧ µ(y) for all x, y, z ∈ L.

Proof. Suppose that µ is an ordered fuzzy filter of L. Let m be a maximal
element of L and x ∧m ≤ (y 7→ z) ∧m. Then x 7→ (y 7→ z) = m. By Theorem
3.7

µ(z) ≥ µ(y) ∧ µ(y 7→ z)

and
µ(y 7→ z) ≥ µ(x) ∧ µ(x 7→ (y 7→ z)) = µ(x) ∧ µ(m) = µ(x)

Thus we get
µ(z) ≥ µ(y) ∧ µ(y 7→ z) ≥ µ(y) ∧ µ(x) ∧ µ(x 7→ (y 7→ z)) ≥ µ(y) ∧ µ(x)

Conversely, suppose that x ∧m ≤ (y 7→ z) ∧m implies µ(z) ≥ µ(x) ∧ µ(y) for
all x, y, z ∈ L. Let for any x ∈ L, µ(x) = α, α ∈ [0, 1] and x∧m ≤ m = m∧m.
This implies by the given conditions µ(m) ≥ µ(x) = α, ∀α ∈ [0, 1]. Thus we
have µ(m) = 1. For any x, y ∈ L, x ∧m ≤ ((x 7→ y) 7→ y) ∧m. This implies
by the given conditions µ(y) ≥ µ(x) ∧ µ(x 7→ y). Hence µ is an ordered fuzzy
filter. �
Corollary 3.9. Let m be a maximal element of an HADL L and µ a nonempty
fuzzy subset of L. Then µ is an ordered fuzzy filter if and only if x 7→ (y 7→ z) = m
implies µ(z) ≥ µ(x) ∧ µ(y)for all x, y, z ∈ L.
Lemma 3.10. Let m be an ordered fuzzy filter of L. Then µ(x 7→ (y 7→ z)) ≥
µ((x 7→ y) 7→ z) for all x, y, z ∈ L.
Theorem 3.11. Let µ be an ordered fuzzy filter of a HADL L with a maximal
element m. Then µ(x 7→ y) ≥ µ(a) ∧ µ((x 7→ a) 7→ y) for all x, y ∈ L.
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Theorem 3.12. Let (L,∨,∧, 7→, 0,m) and (L
′
,∨,∧, 7→, 0

′
,m

′
) be two HADLs

and f : L 7→ L
′ an onto mapping such that f(x 7→ y) = f(x) 7→ f(y) for all

x, y ∈ L. Then the following properties hold.
(1) If µ is an ordered fuzzy filter of L, then f(µ) is an ordered fuzzy filter of

L
′ ,

(2) If λ is an ordered fuzzy filter of L′ , then f−1(λ) is an ordered fuzzy filter
of L.

Definition 3.13. Let m be a maximal element of L. For any ordered fuzzy
filter µ of L and a ∈ L, the fuzzy subset µa is defined as follows:

µa(x) = µ((a 7→ x) ∧m), ∀x ∈ L

It is obvious that µ0 = χL and µm = µ.

Theorem 3.14. Let m be a maximal element of L. If µ is an ordered fuzzy
filter of L and a ∈ L, then µa is an ordered fuzzy filter of L containing µ.

Proof. µa(m) = µ((a 7→ m) ∧m) = µ(m) = 1

µa(x) ∧ µa(y) = µ((a 7→ x) ∧m) ∧ µ((a 7→ y) ∧m)

≤ µ(((a 7→ x) ∧m) ∧ ((a 7→ y) ∧m)))

= µ((a 7→ x) ∧ (a 7→ y) ∧m)

= µ((a 7→ (x ∧ y) ∧m)

= µa(x ∧ y)
Let x ∧m ≤ y ∧m. Then a 7→ (x ∧m) ≤ a 7→ (y ∧m)

µa(y) = µ((a 7→ y) ∧m)

= µ((a 7→ y) ∧ (a 7→ m))

= µ(a 7→ (y ∧m))

≥ µ(a 7→ (x ∧m))

= µ((a 7→ x) ∧m))

= µa(x)

This implies µa is an ordered fuzzy filter of L.
µa(x) = µ((a 7→ x) ∧m)

≥ µ(a 7→ x) ∧ µ(m)

= µ(a 7→ x)

≥ µ(x) as x ∧m ≤ (a 7→ x) ∧m
This implies µ ⊆ µa. �

Lemma 3.15. Let µ, λ be two ordered filters of L. Then for any a, b ∈ L, we
have the following properties:
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(1) a ≤ b implies λb ⊆ λa,
(2) µ ⊆ λ implies µa ⊆ λa,
(3) µa ∩ λa = (µ ∩ λ)a,
(4) λa∨b = λa ∩ λb = λb∨a,
(5) λa∧b = λb∧a.
(6) λa∧b = (λa)b = (λb)a,
(7) (λa)a = λa,
(8) µ(a) = 1 if and only if µa = µ

Proof. (1) Let a ≤ b for any a, b ∈ L. Then (b → x) ∧ m ≤ (a → x) for any
x ∈ L. Now, λb(x) = λ((b→ x)∧m) ≤ λ((a→ x)∧m) = λa(x). Hence λb ⊆ λa.
(2) and (3) is straightforward.

(4) (λa ∩ λb)(x) = λa(x) ∧ λb(x)
= λ((a→ x) ∧m) ∧ λ((b→ x) ∧m)

= λ((a→ x) ∧m ∧ (b→ x) ∧m)

= λ((a→ x) ∧ (b→ x) ∧m)

= λ((a ∨ b) → x) ∧m)

= λa∨b(x).

Since (λa ∩ λb) = (λb ∩ λa), λa∨b = λa ∩ λb = λb∨a.

(5) λa∧b(x) = λ(((a ∧ b) → x) ∧m)

= λ(((b ∧ a) → x) ∧m) = λb∧a(x)

(6) λa∧b(x) = λ(((a ∧ b) → x) ∧m)

= λ((a→ (b→ x)) ∧m)

= λa((b→ x) ∧m)

= (λa)b.

By (5) λa∧b = (λb)a. Hence λa∧b = (λa)b = (λb)a

By (6), (7) is clear.
(8) Suppose that µ(a) = 1.

µa(x) = µ((a→ x) ∧m)

= µ((a→ x) ∧m) ∧ 1

= µ((a→ x) ∧m) ∧ µ(a)
≤ µ(a ∧ (a→ x) ∧m)

= µ(a ∧ x ∧m)

= µ(x), since a ∧ x ∧m ∧m ≤ a ∧ x ∧m ≤ x ∧m
This implies µa ⊆ µ. Clearly µ ⊆ µa. Hence µa = µ.
Conversely, suppose that µ ⊆ µa. Now µ(a) = µa(a) = µ((a→ a)∧m) = 1. �
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For any ordered fuzzy filter µ of a HADL L, µ denotes the set of all ordered
filters of the form µa, a ∈ L. Then we have the following result.

Theorem 3.16. Let µ be an ordered fuzzy filter of a HADL L. Then µ forms
a distributive lattice.

Proof. For any µa, µb ∈ µ, by (4) µa∨b is the infimum for µa and µb. Next, we
prove that µa∧b is the supremum of µa and µb. By (1) µa, µb ⊆ µa∧b. Let µc
be any upper bound for both µa and µb.

µa∧b(x) = µ((a ∧ b) → x) ∧m)

= µ((a→ (b→ x)) ∧m)

= µa((b→ x) ∧m)

≤ µc((b→ x) ∧m)

= µ(((c→ (a→ x)) ∧m)

= µ(((b→ (c→ x)) ∧m)

= µb((c→ x) ∧m)

≤ µc((c→ x) ∧m)

= µc(x)

µa∧b = sup{µa, µb}. It is denoted by µa∧b = µa t µb. Thus (µ,t,∩) is lattice.
Finally it can be easily verified that (µ,t,∩) is a distributive lattice. �

Let µ be a nonempty fuzzy subset of L. Then the smallest ordered fuzzy filter
containing µ is called the ordered fuzzy filter generated by µ and denoted by
< µ >. Then the following theorem explains about the description of < µ >.

Theorem 3.17. Let m be a maximal element of L. For any non-empty fuzzy
subset µ of L, we have

< µ > (x) = sup{µ(a1)∧µ(a2)∧ ...∧µ(an) : ((a1 ∧a2 ∧ ...∧an) 7→ x)∧m = m}.

Proof. Clearly < µ > (m) = 1 and µ ⊆< µ >.
< µ > (x)∧ < µ > (x→ y) = sup{µ(a1)∧µ(a2)∧...∧µ(an) : ((a1∧a2∧...∧an) 7→
x)∧m = m}∧sup{µ(b1)∧µ(b2)∧ ...∧µ(bn) : ((b1∧b2∧ ...∧bn) 7→ (x→ y))∧m =
m} = sup{µ(a1)∧µ(a2)∧...∧µ(an)∧µ(b1)∧µ(b2)∧...∧µ(bn) : ((a1∧a2∧...∧an) 7→
x)∧m = m, ((b1∧ b2∧ ...∧ bn) 7→ (x→ y))∧m = m} ≤ sup{µ(a1)∧µ(a2)∧ ...∧
µ(an)∧µ(b1)∧µ(b2)∧...∧µ(bn) : ([(a1∧a2∧...∧an)∧(b1∧b2∧...∧bn)] 7→ y)∧m =
m} =< µ > (y). Thus < µ > is an ordered fuzzy filter of L containing µ. Let ν
be any ordered fuzzy filter of L containing µ. This implies < µ >⊆< ν >= ν.
Hence < µ > is the smallest ordered fuzzy filter containing µ. �

Corollary 3.18. Let m be a maximal element of L. If µ is an ordered fuzzy
filter of L and a ∈ L, then µa is the smallest ordered fuzzy filter containing µ
and µa(a) = 1.
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4. The space of prime ordered fuzzy filters

For each x ∈ L and α ∈ [0, 1) remember from [3] that, the fuzzy subset xα of
L given by:

xα(z) =

{
α if x = z

0 if otherwise

for all z ∈ L is called a fuzzy point of L. In this case x is called the support of
xα and α its value. For a fuzzy point xα of L and a fuzzy subset µ of L we write
xα ∈ µ(xα ⊆ µ) to say that µ(x) ≥ α.

Theorem 4.1. Let α ∈ [0, 1), µ be an ordered fuzzy filter and λ be a fuzzy ideal
of L such that µ ∩ λ ≤ α. Then there exists a prime ordered fuzzy filter η of L
such that µ ⊆ η and η ∩ λ ≤ α.

Proof. Put ξ = {θ : θ is an ordered fuzzy filter, µ ⊆ θ, θ ∩ σ ≤ α}. Clearly
µ ∈ ξ, ξ 6= ∅, (ξ,⊆) is a poset. Let Q = {µi : i ∈ Ω} be a chain in ξ. We prove
that ∪i∈Ωµi ∈ ξ. Clearly (∪i∈Ωµi)(m) = 1. For any x, y ∈ L,

(∪i∈Ωµi)(x) ∧ (∪i∈Ωµi)(y) = sup{µi(x) : i ∈ Ω} ∧ sup{µj(y) : j ∈ Ω}
= sup{µi(x) ∧ µj(y) : i, j ∈ Ω}
≤ sup{(µi ∪ µj)(x) ∧ (µi ∪ µj)(y) : i, j ∈ Ω}

Since Q is a chain, µi ⊆ µj or µj ⊆ µi. Without loss of generality, assume
µj ⊆ µi. This implies µi ∪ µj = µi. This shows,

(∪i∈Ωµi)(x) ∧ (∪i∈Ωµi)(y) ≤ sup{µi(x) ∧ µi(y), i ∈ Ω}
≤ sup{µi(x ∧ y), i ∈ Ω}
= (∪i∈Ωµi)(x ∧ y)

Suppose that x ∧ m ≤ y ∧ m. Now (∪i∈Ωµi)(x) = sup{µi(x) : i ∈ Ω} ≤
sup{µi(y) : i ∈ Ω} = (∪i∈Ωµi)(y). Hence ∪i∈Ωµi is an ordered fuzzy filter of L.
Since µi ∩ σ ≤ α for each i ∈ Ω,

((∪i∈Ωµi) ∩ σ)(x) = (∪i∈Ωµi)(x) ∧ σ(x)
= sup{µi(x), i ∈ Ω} ∧ σ(x)
= sup{µi(x) ∧ σ(x), i ∈ Ω}
= sup{(µi ∧ σ)(x), i ∈ Ω} ≤ α

Thus (∪i∈Ωµi) ∩ σ) ≤ α. Hence ∪i∈Ωµi ∈ ξ. By applying Zorn’s Lemma, we
get a maximal element, say ϕ, i.e, ϕ is an ordered fuzzy filter of L such that
µ ⊆ ϕ and ϕ∩ σ ≤ α. Next, we show that ϕ is a prime ordered fuzzy filter of L.
Assume that ϕ is not a prime ordered fuzzy filter.

For any a, b ∈ L, such that ϕ(a) 6= 1 and ϕ(b) 6= 1. This implies ϕ ⊂ ϕa and
ϕ ⊂ ϕb. Since ϕ is a maximal in ξ, we get ϕa, ϕb /∈ ξ. This implies there exist
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x, y ∈ L such that (ϕa ∩σ)(x) > α and (ϕb ∩σ)(y) > α. This implies ϕa(x) > α,
σ(x) > α, and ϕb(y) > α, σ(y) > α. Hence σ(x ∨ y) > α and

(ϕa ∩ ϕb)(x ∨ y) = ϕa∨b(x ∨ y)
= ϕ(((a ∨ b) → (x ∨ y)) ∧m)

= ϕ(((a→ (x ∨ y)) ∧m) ∧ (b→ (x ∨ y)) ∧m)

≥ ϕ(((a→ (x ∨ y)) ∧m) ∧ ϕ((b→ (x ∨ y)) ∧m)

≥ ϕ((a→ x) ∧m ∧ (b→ y) ∧m)

= ϕa(x) ∧ ϕb(y)
> α

If ϕa ∩ ϕb ⊆ ϕ, then ϕ ∩ σ > α, which is a contradiction. Therefore ϕ is a prime
ordered fuzzy filter. �

Corollary 4.2. Let µ be an ordered fuzzy filter and λ be a fuzzy ideal of L such
that µ ∩ λ = 0. Then there exists a prime ordered fuzzy filter ϕ such that µ ⊆ ϕ
and ϕ ∩ λ = 0.

Corollary 4.3. Let α ∈ [0, 1), µ be an ordered fuzzy filter of L and µ(x) ≤ α.
Then there exists a prime ordered fuzzy filter θ of L such that µ ⊆ θ and θ(x) ≤ α.

Proof. Put ξ = {θ : θ is an ordered fuzzy filter, µ ⊆ θ and θ(x) ≤ α}. Clearly
µ ∈ ξ, ξ 6= ∅, and (ξ,⊆) is a poset. Let Q = {µi : i ∈ Ω} be a chain in ξ. We
prove that ∪i∈Ωµi ∈ ξ. By Theorem 4.1, (∪i∈Ωµi) is an ordered fuzzy filte of L.
Since µi ⊆ θ for each i ∈ Ω and θ(x) ≤ α.

(∪i∈Ωµi)(x) = sup{µi(x), i ∈ Ω} ≤ θ(x) ≤ α.
Hence ∪i∈Ωµi ∈ ξ. By applying Zorn’s Lemma, we get a maximal element of ξ,
say δ, i.e, ϕ is an ordered fuzzy filte such that µ ⊆ ϕ and ϕ(x) ≤ α. Next we
show that ϕ is a prime ordered fuzzy filte of L. Assume that ϕ is not a prime
ordered fuzzy filte. For any a, b ∈ L, such that ϕ(a) 6= 1 and ϕ(b) 6= 1. This
implies ϕ ⊂ ϕa and ϕ ⊂ ϕb. Since ϕ is a maximal in ξ, we get ϕa, ϕb /∈ ξ. This
implies ϕa(x) > α and ϕb(x) > α. Now,

(ϕa ∩ ϕb)(x) = ϕa∨b(x)

= ϕ(((a ∨ b) → x) ∧m)

= ϕ(((a→ x) ∧m) ∧ (b→ x) ∧m)

≥ ϕ((a→ x) ∧m) ∧ ϕ((b→ y) ∧m)

= ϕa(x) ∧ ϕb(y)
> α

If ϕa ∩ ϕb ⊆ ϕ, then ϕ(x) > α, which is a contradiction. Therefore ϕ is a prime
ordered fuzzy filter. �

Corollary 4.4. For any ordered fuzzy filter µ of an L, we have µ = ∩{σ : σ is
a prime ordered fuzzy filter of L, µ ⊆ σ}.
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Corollary 4.5. Then the intersection of all prime ordered fuzzy filters of L is
equal to χM◦ .

Let L be an HADL and X◦ denotes the set of all prime ordered fuzzy filters
of L. For a fuzzy subset θ of L, define H◦(θ) = {µ ∈ X◦ : θ ⊆ µ}, and
X◦(θ) = {µ ∈ X◦ : θ * µ}.

Theorem 4.6. The collection T = {X◦(θ) : θ is an ordered fuzzy filter of L} is
a topology on X◦.

Proof. Consider the fuzzy subsets λ1, λ2 of L defined as : λ1(x) = 0 and λ2(x) =
1 for all x ∈ L. Clearly [λ1) and λ2 are fuzzy filters of L. [λ1) ⊆ µ for all µ ∈ X◦,
which is impossible. Thus X◦([λ1)) = ∅. Since each µ ∈ X◦ is non-constant,
λ2 * µ for all µ ∈ X◦. Thus X◦(λ2) = X◦. This implies ∅, X◦ ∈ T .

Also for any fuzzy filters λ1 and λ2 of L, we have X◦(λ1)∩X◦(λ2) = X◦(λ1∩
λ2). This show that T is closed under finite intersections. Next, let {λi, i ∈ Ω} be
any family of fuzzy filters of L. Now we prove that ∪i∈ΩX

◦(λi) = X◦([∪i∈Ωλi)).
Let µ ∈ X◦([∪i∈Ωλi)), then [∪i∈Ωλi) * µ, which implies that λi * µ for some
i ∈ Ω. Otherwise if λi ⊆ µ for each i ∈ Ω, it will be true that [∪i∈Ωλi) ⊆ µ. Thus
µ ∈ ∪i∈ΩX

◦(λi) whence X◦([∪i∈Ωλi)) ⊆ ∪i∈ΩX
◦(λi). Clearly ∪i∈ΩX

◦(λi) ⊆
X◦([∪i∈Ωλi)). Hence ∪i∈ΩX

◦(λi) = X◦([∪i∈Ωλi)). Therefore, T is closed under
arbitrary unions and hence, it is Topology on X◦. �

Definition 4.7. The topological space (X◦, T ) is called the prime ordered fuzzy
filter Spectrum of L and it is denoted by F − Spac◦F (L).

Lemma 4.8. Let λ be a fuzzy subset of L. Then X◦(λ) = X◦([λ)).

Proof. Since λ ⊆ [λ), X◦(λ) ⊆ X◦([λ)). Let µ ∈ X◦([λ)), then λ * µ. Other-
wise, if λ ⊆ µ, then [λ) ⊆ µ. Which is impossible. So that µ ∈ X◦(λ) and so
X◦(λ) = X◦([λ)). �

Lemma 4.9. For any fuzzy subsets λ and ν of L
X◦(λ) = X◦(ν) ⇒ [λ) = [ν)

Proof. Prove that using a contradiction. Suppose if possible that [λ) 6= [ν)
Then there exists x ∈ L such that [λ)(x) ≥ [ν)(x). Let say [ν)(x) = r. Then by
Corollary 4.3 there exists a prime ordered fuzzy filter θ of L such that [ν) ⊆ θ
and θ(x) = r < [λ)(x). So θ ∈ X◦(λ) and θ /∈ X◦(ν) . Therefore X◦(λ) 6= X◦(ν)
and this completes the proof. �

Lemma 4.10. Let x, y ∈ L, and α ∈ (0, 1]. Then
(1) ∪x∈L, α∈(0,1]X

◦(xα) = X◦,
(2) X◦(xα) ∩X◦(yα) = X◦((x ∨ y)α),
(3) X◦(xα) ∪X◦(yα) = X◦((x ∧ y)α),
(4) X◦(xα) = ∅ ⇔ x ∈M◦,
(5) X◦((x ∨m)α) = X◦((m ∨ x)α) = X◦(xα)
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Theorem 4.11. Let µ be an ordered filter of a HADL L. Then xα ∈ µ if and
only if X◦(xα) ⊆ X◦(µ).

Proof. Assume that xα ∈ µ. Let θ ∈ X◦ be such that θ ∈ X◦(xα). Then xα * θ.
Hence we get µ * θ. Thus it yields θ ∈ X◦(µ). Therefore X◦(xα) ⊆ X◦(µ).
Conversely, assume that X◦(xα) ⊆ X◦(µ). Suppose that xα /∈ µ. This implies
µ(x) < α. Then by Corollary 4.3, there exists θ ∈ X◦ such that µ ⊆ θ and
θ(x) < α. Hence xα * θ and so θ ∈ X◦(xα). Since θ ∈ X◦(µ), it follows that
X◦(xα) * X◦(µ), which is a contradiction. �

Theorem 4.12. Let B = {X◦(xα) : x ∈ L,α ∈ (0, 1]}. Then B forms a base for
some topology on τ .

Proof. By Lemma 4.10, (1) am (2), it follows that B forms a base for some
topology on τ . �

Theorem 4.13. Let L be a HADL with maximal element m. Then we have the
following:

(1) For any x ∈ L and α ∈ (0, 1], X◦(xα) is compact in X◦.
(2) The space X◦ is a T0-space,
(3) Let A be a compact open subset of X◦. Then A = X◦(xα) for some

x ∈ L and α ∈ (0, 1].

Corollary 4.14. X◦ is a compact space.

For any fuzzy subset θ of L, X◦(θ) = {µ ∈ X◦ : µ * θ} is open set of X◦ and
H◦(θ) = Xe − X◦(θ) is a closed set of X◦. Also every closed set in X◦ is the
form of H◦(θ) for all fuzzy subset of L. Then we have the following:

Theorem 4.15. The closure of any A ⊆ X◦ is given by A = H◦(∩µ∈Aµ).

Proof. Let A ⊆ X◦ and β ∈ A. Then ∩µ∈Aµ ⊆ β. Thus β ∈ H◦(β) ⊆
H◦(∩µ∈Aµ). Therefore, H◦(∩µ∈Aµ) is a closed set containing A. Let C be any
closed set containing A in X◦ . Then C = H◦(θ) for some fuzzy subset θ of
L. Since A ⊆ C = H◦(θ), we have θ ⊆ µ for all µ ∈ A. Hence θ ⊆ ∩µ∈Aµ.
Therefore, H◦(∩µ∈Aµ) ⊆ H◦(θ) = C. Hence H◦(∩µ∈Aµ) is the smallest closed
set containing A. Therefore, A = H◦(∩µ∈Aµ). �
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