DOI QR코드

DOI QR Code

Anti-adipocyte differentiation activity and flavonoid content determination by HPLC/UV analysis of tree sprouts

  • Kim, Juree (Department of Plant Science and Technology, Chung-Ang University) ;
  • Jang, Taewon (Department of Biomedical Science, Jungwon University) ;
  • Kim, Ji Hyun (Department of Food Science, Gyeongsang National University) ;
  • Shin, Hanna (Department of Forest Bioresources, National Institute of Forest Science) ;
  • Park, Jaeho (Department of Biomedical Science, Jungwon University) ;
  • Lee, Sanghyun (Department of Plant Science and Technology, Chung-Ang University)
  • 투고 : 2021.07.13
  • 심사 : 2021.08.02
  • 발행 : 2021.09.30

초록

The in vitro anti-obesity activity of 12 species of tree sprouts in differentiated 3T3-L1 cells and the mechanisms underlying their activity were evaluated. (+)-Catechin and quercetin concentrations in the sprouts were analyzed by HPLC/UV at 270 and 254 nm, respectively. Euonymus alatus (EAT) and Fraxinus mandschuria (FMS) extracts at doses of 50 and 100 ㎍/mL inhibited the accumulation of lipid droplets in differentiated 3T3-L1 cells. Moreover, EAT and FMS downregulated the expression of the CCAAT/enhancer-binding protein-α, adipogenesis-related proteins peroxisome proliferator-activated receptor-γ, and adipocyte P-2α in differentiated 3T3-L1 cells. Tree sprouts with an abundant flavonoid content exerted the highest anti-obesity activity. Concentrations of total flavonoids were the highest in FMS (24.281 mg/g DW) sprouts. These findings could be used to develop health-promoting functional foods or supplements derived from tree sprouts.

키워드

과제정보

This work was supported by the Research Program for Forest Science & Technology Development of the National Institute of Forest Science (Project No. FG0403-2018-03).

참고문헌

  1. You JS, Lee YJ, Kim KS, Kim SH, Chang KJ (2014) Ethanol extract of lotus (Nelumbo nucifera) root exhibits an anti-adipogenic effect in human pre-adipocytes and anti-obesity and anti-oxidant effects in rats fed a high-fat diet. Nutr Res 34: 258-267. doi: 10.1016/j.nutres.2014.01.003
  2. Wang Z, Hwang SH, Kim JH, Lim SS (2017) Anti-obesity effect of the above-ground part of Valeriana dageletiana Nakai ex F. Maek extract in high-fat diet-induced obese C57BL/6N mice. Nutrients 9: 689. doi: 10.3390/nu9070689
  3. Caro JF, Dohm LG, Pories WJ, Sinha MK (1989) Cellular alterations in liver, skeletal muscle, and adipose tissue responsible for insulin resistance in obesity and type II diabetes. Diabetes Metab Rev 5: 665-689. doi: 10.1002/dmr.5610050804
  4. Martin RJ, Ramsay T, Hausman GJ (1984) Adipocyte development. Pediatr Ann 13: 448-453
  5. Lee J, Jung E, Lee J, Huh S, Kim YS, Kim YW, Kim YS, Park D (2010) Anti-adipogenesis by 6-thioinosine is mediated by downregulation of PPAR γ through JNK-dependent upregulation of iNOS. Cell Mol Life Sci 67: 467-481. doi: 10.1007/s00018-009-0196-y
  6. Choi Y, Kim YC, Han YB, Park Y, Pariza MW, Ntambi JM (2000) The trans-10, cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. J Nutr 130: 1920-1924. doi: 10.1093/jn/130.8.1920
  7. Ali AT, Hochfeld WE, Myburgh R, Pepper MS (2013) Adipocyte and adipogenesis. Eur J Cell Biol 92: 229-236. doi: 10.1016/j.ejcb.2013.06.001
  8. Kuo SM (1996) Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett 110: 41-48. doi: 10.1016/s0304-3835(96)04458-8
  9. Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37: 837-841. doi: 10.1016/0006-2952(88)90169-4
  10. Harmon AW, Harp JB (2001) Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Physiol Cell Physiol 280: C807-C813. doi: 10.1152/ajpcell.2001.280.4.C807
  11. Delage B (2015) Flavonoids. Linus Pauling Institute, Oregon State University, Corvallis, Oregon
  12. Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 107: 135-142. doi: 10.1172/JCI11914
  13. Cazarolli LH, Zanatta L, Alberton EH, Bonorino Figueiredo MSR, Folador P, Damazio RG, Pizzolatti MG, Silva FR (2008). Flavonoids: prospective drug candidates. Mini Rev Med Chem 8: 1429-1440. doi: 10.2174/138955708786369564
  14. Cushnie TP, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38: 99-107. doi: 10.1016/j.ijantimicag.2011.02.014
  15. Kwik-Uribe C, Bektash RM (2008) Cocoa flavanols-measurement, bioavailability and bioactivity. Asia Pac J Clin Nutr 17: 280-283
  16. Galvez MC, Barroso CG, Perez-Bustamante JA (1994) Analysis of polyphenolic compounds of different vinegar samples. Z Lebensm Unters Forsch 199: 29-31 https://doi.org/10.1007/BF01192948
  17. Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 31: 435-445. doi: 10.1016/j.mam.2010.09.006
  18. Hur MJ, Kim IH, Park JC (2007) Hepatoprotective effect of catechin isolated from the root of Rosa rugosa Thunb. Korean J Med Crop Sci 15: 21-25
  19. Sanchez-Fidalgo S, da Silva MS, Cardeno A, Aparicio-Soto M, Salvador MJ, Frankland Sawaya AC, Souza-Brito AR, de la Lastra CA (2013) Abarema cochliacarpos reduces LPS-induced inflammatory response in murine peritoneal macrophages regulating ROS-MAPK signal pathway. J Ethnopharmacol 149: 140-147. doi: 10.1016/j.jep.2013.06.013
  20. Melgarejo E, Medina MA, Sanchez-Jimenez F, Urdiales JL (2010) Targeting of histamine producing cells by EGCG: A green dart against inflammation? J Physiol Biochem 66: 265-270. doi: 10.1007/s13105-010-0033-7
  21. Lee EH, Lee JK, Hong JT, Jung KM, Kim YK, Lee SH, Chung SY, Lee YW (2001) Protective effect of green tea extract, catechin on UVB-induced skin damage. J Food Hyg Saf 16: 117-124
  22. Lambert JD, Hong J, Yang GY, Liao J, Yang CS (2005) Inhibition of carcinogenesis by polyphenols: Evidence from laboratory investigations. Am J Clin Nutr 81: 284S-291S. doi: 10.1093/ajcn/81.1.284S
  23. Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 389: 25-54 https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
  24. Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signaling molecules? Free Radic Biol Med 36: 838-849. doi: 10.1016/j.freeradbiomed.2004.01.001
  25. Jung JW, Lee S (2014) Anxiolytic effects of quercetin: Involvement of GABAergic system. J Life Sci 24: 290-296. doi: 10.5352/JLS.2014.24.3.290
  26. Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y (2010) Characterisation of anti-Staphylococcus aureus activity of quercetin. Int J Food Sci Technol 45: 1250-1254. doi: 10.1111/j.1365-2621.2010.02267.x|
  27. Lee DS, Kim JG, Lee SH (2006) Inhibition of α-glucosidase activity by quercetin. Korean J Microbiol Biotechnol 34: 368-372
  28. Wong RW, Rabie AB (2008) Effect of quercetin on bone formation. J Orthop Res 26: 1061-1066. doi: 10.1002/jor.20638
  29. Harikrishnan H, Jantan I, Haque MA, Kumolosasi E (2018) Anti-inflammatory effects of hypophyllanthin and niranthin through downregulation of NF-κB/MAPKs/PI3K-Akt signaling pathways. Inflammation 41: 984-995. doi: 10.1007/s10753-018-0752-4
  30. Yu SY, Kwon YI, Lee C, Apostolidis E, Kim YC (2017) Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha-glucosidase and glucose transporters and PPARγ expression. BioFactors 43: 90-99. doi: 10.1002/biof.1311
  31. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation, and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62: 720-733. doi: 10.1016/j.jhep.2014.10.039
  32. Ng R, Wu H, Xiao H, Chen X, Willenbring H, Steer CJ, Song G (2014) Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology 60: 554-564. doi: 10.1002/hep.27153
  33. Mitsutake S, Zama K, Yokota H, Yoshida T, Tanaka M, Mitsui M, Ikawa M, Okabe M, Tanaka Y, Yamashita T, Takemoto H, Okazaki T, Watanabe K, Igarashi Y (2011) Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes. J Biol Chem 286: 28544-28555. doi: 10.1074/jbc.M111.255646
  34. Lin JK, Lin-Shiau SY (2006) Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 50: 211-217. doi: 10.1002/mnfr.200500138
  35. Sun NN, Wu TY, Chau CF (2016) Natural dietary and herbal products in anti-obesity treatment. Molecules 21: 1351. doi: 10.3390/molecules21101351
  36. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry 97: 493-497. doi: 10.1007/BF00316069
  37. Ali AT, Penny CB, Paiker JE, van Niekerk C, Smit A, Ferris WF, Crowther NJ (2005) Alkaline phosphatase is involved in the control of adipogenesis in the murine preadipocyte cell line, 3T3-L1. Clin Chim Acta 354: 101-109. doi: 10.1016/j.cccn.2004.11.026
  38. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78: 783-809. doi: 10.1152/physrev.1998.78.3.783
  39. Tong Q, Hotamisligil GS (2001) Molecular mechanisms of adipocyte differentiation. Rev Endocr Metab Disord 2: 349-355 https://doi.org/10.1023/A:1011863414321
  40. Ntambi JM, Kim YC (2000) Adipocyte differentiation and gene expression. J Nutr 130: 3122S-3126S. doi: 10.1093/jn/130.12.3122S