DOI QR코드

DOI QR Code

Role of Cel5H protein surface amino acids in binding with clay minerals and measurements of its forces

  • Renukaradhya K. Math (SDM Research Institute for Biomedical Sciences, 5th Floor, Manjushree Building, SDM College of Medical Sciences & Hospital Campus) ;
  • Nagakumar Bharatham (The University of Trans-Disciplinary Health Sciences and Technology (TDU)) ;
  • Palaksha K. Javaregowda (SDM Research Institute for Biomedical Sciences, 5th Floor, Manjushree Building, SDM College of Medical Sciences & Hospital Campus) ;
  • Han Dae Yun (Division of Applied Life Sciences, Gyeongsang National University)
  • 투고 : 2021.09.20
  • 심사 : 2021.10.27
  • 발행 : 2021.12.31

초록

Our previous study on the binding activity between Cel5H and clay minerals showed highest binding efficiency among other cellulase enzymes cloned. Here, based on previous studies, we hypothesized that the positive amino acids on the surface of Cel5H protein may play an important role in binding to clay surfaces. To examine this, protein sequences of Bacillus licheniformis Cel5H (BlCel5H) and Paenibacillus polymyxa Cel5A (PpCel5A) were analyzed and then selected amino acids were mutated. These mutated proteins were investigated for binding activity and force measurement via atomic force microscopy (AFM). A total of seven amino acids which are only present in BlCel5H but not in PpCel5A were selected for mutational studies and the positive residues which are present in both were omitted. Of the seven selected surface lysine residues, only three mutants K196A(M2), K54A(M3) and K157T(M4) showed 12%, 7% and 8% less clay mineral binding ability, respectively compared with wild-type. The probable reason why other mutants did not show altered binding efficiency might be due to relative location of amino acids on the protein surface. Meanwhile, measurement of adhesion forces on mica sheets showed a well-defined maximum at 69±19 pN for wild-type, 58±19 pN for M2, 53±19 pN for M3, and 49±19 pN for M4 proteins. Hence, our results demonstrated that relative location of surface amino acids of Cel5H protein especially positive charged amino acids are important in the process of clay mineral-protein binding interaction through electrostatic exchange of charges.

키워드

과제정보

Renukaradhya K. Math was supported by scholarships from the BK21Program, Ministry of Education & Human Resources Development, Korea. I also thank you Dr. Prabhajan Gai for proofreading the whole manuscript.

참고문헌

  1. M. R. Barnes, I. C. Gray (eds.), Bioinformatics for geneticists, first edition (Wiley, ISBN 0-470-84394-2, 2003). https://doi.org/10.1002/bmb.2004.494032049999
  2. M.H. Baron, M. Revault, S. Servagent-Noinville, J. Abadie, H. Quiquampoix, Chymotrypsin adsorption on montmorillonite: Enzymatic activity and kinetic FTIR structural analysis. J. Col. Interface. Sci. 214, 319-332 (1999) https://doi.org/10.1006/jcis.1999.6189
  3. K. Bharatham, N. Bharatham, K.H. Park, K.W. Lee, Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of a-glucosidase inhibitors. J. Mol. Graph. Model. 26, 1202-1212 (2008) https://doi.org/10.1016/j.jmgm.2007.11.002
  4. N. Bharatham, K. Bharatham, K.W. Lee, Pharmacophore identification and virtual screening for methionyl-tRNA synthetase inhibitors. J. Mol. Graph. Model. 25, 813-823 (2007) https://doi.org/10.1016/j.jmgm.2006.08.002
  5. R.G. Burns, R.P. Dick, Enzymes in the environment, activity, ecology, and applications, 1st edn. (Marcel Dekker, Inc. https://doi.org/10.1201/9780203904039, 2002)
  6. E.A. Burstein, N.S. Vedenkina, M.N. Irkova, Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 18, 263-279 (1973) https://doi.org/10.1111/j.1751-1097.1973.tb06422.x
  7. K.M. Cho, S.Y. Hong, R.K. Math, S.M.A. Islam, J.O. Kim, Y.H. Lee, H. Kim, H.D. Yun, Cloning of two cellulose genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel44C-man26A. J. Basic Microbiol 48, 464-472 (2008) https://doi.org/10.1002/jobm.200700281
  8. A. Fiser, R.K. Do, A. Sali, Modeling of loops in protein structures. Protein Sci. 9, 1753-1773 (2000) https://doi.org/10.1110/ps.9.9.1753
  9. A. Grifo et al., Binding forces of cellulose binding modules on cellulosic nanomaterials. Biomacromolecules 20, 769-777
  10. P. Guo, L. Zhang, Z. Qi, R. Chen, G. Jing, Expression in Escherichia coli, purification and characterization of Thermoanaerobacter tengcongensis ribosome recycling factor. J. Biochem. 138, 89-94 (2005) https://doi.org/10.1093/jb/mvi102
  11. H. Heinz, Clay minerals for nanocomposites and biotechnology: Surface modification, dynamics and responses to stimuli. Clay Miner. 47, 205-230 (2012) https://doi.org/10.1180/claymin.2012.047.2.05
  12. S.M.A. Islam, S. Yeasmin, M.S. Islam, M.S. Islam, Binding afnity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme. Ecotoxicol. Environ. Saf. 141, 85-92 (2017)
  13. G. Jones, P. Willett, R.C. Glen, A.R. Leach, R. Taylor, Development and validation of a genetic algorithm for fexible docking. J. Mol. Biol. 267, 727-748 (1997) https://doi.org/10.1006/jmbi.1996.0897
  14. J.T. Kloprogge, S. Komarneni, J.E. Amonette, Synthesis of smectite clay minerals: A critical review. Clays Clay Minerals 47, 529-554 (1999) https://doi.org/10.1346/CCMN.1999.0470501
  15. Z. Liu, M.A. Nash, H. Liu, A.M. Vera, R.C. Bernardi, P. Tinnefeld, High force catch bond mechanism of bacterial adhesion in the human gut. Nat. Commun. 1, 4321 (2020) https://doi.org/10.1038/s41467-020-18063-x
  16. R.K. Math, S. Reddy, H.D. Yun, D. Kambiranda, Y. Ghebreiyessus, Modeling the clay minerals-enzyme binding by fusion fluorescent proteins and under atomic force microscope. Microsc. Res. Tech. 82(6), 884-891 (2019) https://doi.org/10.1002/jemt.23233
  17. R.K. Math, H.D. Yun, D. Kambiranda, Y. Ghebreiyessus, Binding of cloned Cel enzymes on clay minerals related to the pI of the enzymes and database survey of cellulases of soil bacteria for pI. Biosci. Biotechnol. Biochem. 84, 238-246 (2020). https://doi.org/10.1080/09168451.2019.1679613
  18. D. Moro, G. Ulian, G. Valdre, Nanoscale cross-correlated AFM, kelvin probe, elastic modulus and quantum mechanics investigation of clay mineral surfaces: The case of chlorite. Appli. Clay. Sci. 131, 175-181 (2016) https://doi.org/10.1016/j.clay.2015.11.023
  19. D. Moro, G. Ulian, G. Valdre, Nano-atomic scale hydrophobic/philic confinement of peptides on mineral surfaces by cross-correlated SPM and quantum mechanical DFT analysis. J. Microsc. 280(3), 204-221 (2020) https://doi.org/10.1111/jmi.12923
  20. H. Mueller, H.J. Butt, E. Bamberg, Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. Biophys. J. 6, 1072-1079 (1999) https://doi.org/10.1016/S0006-3495(99)77272-3
  21. T. Okada, M. Sano, Y. Yamamoto, H. Muramatsu, Evaluation of interaction forces between proflin and designed peptide probes by atomic force microscopy. Langmuir 24, 4050-4055 (2008) https://doi.org/10.1021/la703344u
  22. O. Pietrement, F.A. Castro-Smirnov, E. Le Cam, P. Aranda, E. Ruiz-Hitzky, B.S. Lopez, Sepiolite as a new Nanocarrier for DNA transfer into mammalian cells: Proof of concept, Issues and Perspectives. Chem. Rec. 18, 849-857 (2018) https://doi.org/10.1002/tcr.201700078
  23. C. Ponnamperuma, A. Shimoyama, E. Friebele, Clay and the origin of life. Orig. Life Evol. Biosph. 12, 9-40 (1982) https://doi.org/10.1007/BF00926908
  24. T.L. Porter, M.P. Eastman, R. Whitehorse, E. Bain, K. Manygoats, The Interaction of Biological Molecules with Clay Minerals: A Scanning Force Microscopy Study. Scanning 22, 1-5 (2000)
  25. M. Radmacher, M. Fritz, J.P. Cleveland, D.A. Waletrs, P.K. Hansma, Imaging adhesion forces and elasticity of lysozyme adsorbed on mica with the atomic force microscope. Langmuir 10, 3809-3814 (1994) https://doi.org/10.1021/la00022a068
  26. A.A. Safari Sinegani, G. Emtiazi, H. Shariatmadari, Sorption and immobilization of cellulase on silicate clay minerals. J. Col. Interface. Sci. 290, 39-44 (2005) https://doi.org/10.1016/j.jcis.2005.04.030
  27. A. Sali, T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815 (1993) https://doi.org/10.1006/jmbi.1993.1626
  28. G. Sanjay, S. Sugunan, Glucoamylase immobilized on montmorillonite: Synthesis, characterization and starch hydrolysis activity in a fixed bed reactor. Catal. Commun. 6, 525-530 (2005)
  29. G. Sposito, N.T. Skipper, R. Sutton, S. Park, A.K. Soper, J.A. Greathouse, Surface Geochemistry of the clay minerals. Proc. Natl. Acad. Sci. U. S. A. 96, 3358-3364 (1999)
  30. S. Staunton, H. Quiquampoix, Adsorption and conformation of bovine serum albumin on montmorillonite: Modification of the balance between hydrophobic and electrostatic interaction by protein methylation and pH variation. J col. Interface. Sci. 166, 89-94 (1994) https://doi.org/10.1006/jcis.1994.1274
  31. F. Sumbul, F. Rico, Single-molecule force spectroscopy: experiments, analysis, and simulations. Methods Mol. Biol. 1886, 163-189 (2019)
  32. M. Tavanaee, M. Shirvani, S. Bakhtiary, Adhesion of pseudomonas putida onto Palygorskite and Sepiolite clay minerals. Geomicrobiol J. 34, 677-686 (2017) https://doi.org/10.1080/01490451.2016.1238982
  33. M. Tortonese, M. Kirk, Characterization of application specific probes for SPMs. Proc. SPIE 3009. Micromachining Imaging (1997) https://doi.org/10.1117/12.271229
  34. A. Varrot, M. Schulein, S. Fruchard, H. Driguez, G.J. Davies, Atomic resolution structure of endoglucanase Cel5A in complex with methyl 4,4II,4III,4IVtetrathioalpha-cellopentoside highlights the alternative binding modes targeted by substrate mimics. Acta. Crystallogr. D. Biol. Crystallogr. 57, 1739-1742 (2001) https://doi.org/10.1107/S0907444901013993
  35. H. Wang, R. Bash, J.G. Yodh, G.L. Hanger, D. Lohr, S.M. Lindsay, Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys. J. 83, 3619-3625 (2002) https://doi.org/10.1016/S0006-3495(02)75362-9
  36. C.E. Weaver, L.D. Pollard, The Chemistry of Clay Minerals (Elsevier Science Publishing Co. Inc, New York, 1973), pp. 1-5
  37. X.L. Weng, W.L. Cai, R.F. Lan, Q. Sun, Z.L. Chen, Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles. Environ. Pollut. 236, 562-569 (2018) https://doi.org/10.1016/j.envpol.2018.01.100
  38. M. Wright, I. Revenko, Tapping mode AFM operation in fluid. Vecco Application Notes (2004)
  39. X. Yin, V. Gupta, H. Du, X. Wang, J.D. Miller, Surface charge and wetting characteristics of layered silicate minerals. Adv. Col. Interface. Sci. 1(179-182), 43-50 (2012) https://doi.org/10.1016/j.cis.2012.06.004
  40. H. Zhai, L. Wang, C.V. Putnis, Molecular-Scale Investigations Reveal Noncovalent Bonding Underlying the Adsorption of Environmental DNA on Mica. Environ. Sci. Techno. 53, 11251-11259 (2019) https://doi.org/10.1021/acs.est.9b04064