DOI QR코드

DOI QR Code

Melanin-based structural coloration of birds and its biomimetic applications

  • Received : 2021.07.01
  • Accepted : 2021.09.24
  • Published : 2021.12.31

Abstract

Melanin has been a widely researched pigment by scientists for decades as it is undoubtedly the most ubiquitous and ancient pigment found in nature. Melanin plays very signifcant roles in structural plumage colors in birds: it has visible light-absorbing capabilities, and nanoscale structures can be formed by self-assembling melanin granules. Herein, we review recent progress on melanin-based structural coloration research. We hope that this review will provide current understanding of melanin's structural and optical properties, natural coloration mechanisms, and biomimetic methods to implement artifcial melanin-based structural colors.

Keywords

Acknowledgement

This work was funded by the National Institute of Ecology through the grant number NIE-C-2021-18, and also supported by Human Frontier Science Program through the grant number (RGP0047/2019).

References

  1. L.J.I. Auber, The distribution of structural colours and unusual pigments in the class. Aves. 99(3), 463-476 (1957)
  2. F. Bolzoni, S. Giraudo, L. Lopiano, B. Bergamasco, M. Fasano, P.R. Crippa, Magnetic investigations of human mesencephalic neuromelanin. Biochimica Et Biophysica Acta-Molecular Basis of Disease 1586(2), 210-218 (2002). https://doi.org/10.1016/S0925-4439(01)00099-0
  3. S.L. Brusatte, J.K. O'Connor, E.D. Jarvis, The origin and diversifcation of birds. Curr. Biol. 25(19), R888-R898 (2015). https://doi.org/10.1016/j.cub.2015.08.003
  4. C.T. Chen, C. Chuang, J.S. Cao, V. Ball, D. Ruch, M.J. Buehler, Excitonic efects from geometric order and disorder explain broadband optical absorption in eumelanin. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4859
  5. Cheng, J., Moss, S. C., & Eisner, M. (1994). X-Ray Characterization of Melanins.2. Pigment Cell Res., 7(4), 263-273. https://doi.org/10.1111/j.1600-0749.1994.tb00061.x
  6. R.J.B. Cordero, A. Casadevall, Melanin. Curr. Biol. 30(4), R142-R143 (2020)
  7. L. D'Alba, M. Meadows, R. Maia, J.S. Yeo, M. Manceau, M. Shawkey, Morphogenesis of iridescent feathers in Anna's hummingbird Calypte anna. Integrative and comparative biology, icab123. (2021). https://doi.org/10.1093/icb/icab123
  8. L. D'Alba, M.D. Shawkey, Melanosomes: Biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99(1), 1-19 (2019). https://doi.org/10.1152/physrev.00059.2017
  9. M. d'Ischia, A. Napolitano, V. Ball, C.T. Chen, M.J. Buehler, Polydopamine and Eumelanin: From structure-property relationships to a unifed tailoring strategy. Acc. Chem. Res. 47(12), 3541-3550 (2014). https://doi.org/10.1021/ar500273y
  10. d'Ischia, M., Napolitano, A., Pezzella, A., Meredith, P., & Buehler, M. (2020). Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angewandte Chemie-International Edition. https://doi.org/10.1002/anie.201914276
  11. M. d'Ischia, K. Wakamatsu, A. Napolitano, S. Briganti, J.C. Garcia-Borron, D. Kovacs, S. Ito, Melanins and melanogenesis: Methods, standards, protocols. Pigment Cell Melanoma Research 26(5), 616-633 (2013). https://doi.org/10.1111/pcmr.12121
  12. Durrer, H. (1986). Colouration. In biology of the integument (pp. 239-247): Springer
  13. H. Durrer, Villiger, W. J. Z. f. Z. u. m. A., Iridescent colours of. Chrysococcyx cupreus. 109(3), 407-413 (1970)
  14. Eliason, C. M., Bitton, P. P., & Shawkey, M. D. (2013). How hollow melanosomes afect iridescent colour production in birds. Proceedings of the Royal Society B-biological sciences, 280(1767). Doi: ARTN 20131505 10.1098/rspb.2013.1505
  15. C.M. Eliason, R. Maia, J.L. Parra, M.D. Shawkey, Signal evolution and morphological complexity in hummingbirds (Aves: Trochilidae). Evolution 74(2), 447-458 (2020). https://doi.org/10.1111/evo.13893
  16. C.M. Eliason, R. Maia, M.D. Shawkey, Modular color evolution facilitated by a complex nanostructure in birds. Evolution 69(2), 357-367 (2015). https://doi.org/10.1111/evo.12575
  17. J.D. Forster, H. Noh, S.F. Liew, V. Saranathan, C.F. Schreck, L. Yang, E.R. Dufresne, Biomimetic isotropic nanostructures for structural coloration. Adv. Mater. 22(26-27), 2939-2944 (2010). https://doi.org/10.1002/adma.200903693
  18. H. Fudouzi, T. Sawada, Photonic rubber sheets with tunable color by elastic deformation. Langmuir 22(3), 1365-1368 (2006). https://doi.org/10.1021/la0521037
  19. H. Fudouzi, Y.N. Xia, Photonic papers and inks: Color writing with colorless materials. Adv. Mater. 15(11), 892-896 (2003). https://doi.org/10.1002/adma.200304795
  20. Galeb, H. A., Wilkinson, E. L., Stowell, A. F., Lin, H. Y., Murphy, S. T., Martin-Hirsch, P. L., Hardy, J. G. (2021). Melanins as sustainable resources for advanced biotechnological applications. Global challenges, 5(2). Doi: ARTN 2000102.10.1002/gch2.202000102
  21. D.T. Ge, L.L. Yang, G.X. Wu, S. Yang, Angle-independent colours from spray coated quasi-amorphous arrays of nanoparticles: Combination of constructive interference and Rayleigh scattering. J. Mater. Chem. C 2(22), 4395-4400 (2014). https://doi.org/10.1039/c4tc00063c
  22. Greenewalt, C. H., Brandt, W., & Friel, D. D. (1960). Iridescent colors of hum‑ mingbird feathers. 50(10), 1005-1013
  23. N.S. Hart, M. Vorobyev, Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology 191(4), 381-392 (2005). https://doi.org/10.1007/s00359-004-0595-3
  24. Hill, G. E., McGraw, K. J.. (2006). Bird coloration: Mechanisms and measurements (Vol. 1): Harvard University press
  25. G.B. Huang, Y.B. Yin, Z. Pan, M.G. Chen, L. Zhang, Y. Liu, J.P. Gao, Fabrication of 3D photonic crystals from chitosan that are responsive to organic solvents. Biomacromolecules 15(12), 4396-4402 (2014). https://doi.org/10.1021/bm501374t
  26. S. Ito, K. Wakamatsu, Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative review. Pigment cell research, 16(5), 523-531. Doi. (2003). https://doi.org/10.1034/j.1600-0749.2003.00072.x
  27. W. Jetz, G.H. Thomas, J.B. Joy, K. Hartmann, A.O. Mooers, The global diversity of birds in space and time. Nature 491(7424), 444-448 (2012). https://doi.org/10.1038/nature11631
  28. K. Katagiri, K. Uemura, R. Uesugi, K. Inumaru, T. Seki, Y. Takeoka, Structurally colored coating flms with tunable iridescence fabricated via cathodic electrophoretic deposition of silica particles. RSC Adv. 8(20), 10776-10784 (2018). https://doi.org/10.1039/c8ra01215f
  29. S.H. Kim, S. Magkiriadou, D.K. Rhee, D.S. Lee, P.J. Yoo, V.N. Manoharan, G.R. Yi, Inverse photonic glasses by packing Bidisperse hollow microspheres with uniform cores. ACS Appl. Mater. Interfaces 9(28), 24155-24160 (2017). https://doi.org/10.1021/acsami.7b02098
  30. King, T. C. (2007). Elsevier's integrated pathology, 1st ed., chapter 3-Tissue homeostasis, damage, and repair. 59-88 
  31. S. Kinoshita, Structural Colors in the Realm of Nature: World Scientifc (2008). isbn:978-981-270-783-3
  32. S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors. Rep. Prog. Phys. 71(7) (2008). https://doi.org/10.1088/0034-4885/71/7/076401
  33. M. Kohri, Artifcial melanin particles: New building blocks for biomimetic structural coloration. Polym. J. 51(11), 1127-1135 (2019). https://doi.org/10.1038/s41428-019-0231-2
  34. M. Kohri, Progress in polydopamine-based melanin mimetic materials for structural color generation. Sci. Technol. Adv. Mater. 21(1), 833-848 (2020). https://doi.org/10.1080/14686996.2020.1852057
  35. M. Kohri, Y. Nannichi, T. Taniguchi, K. Kishikawa, Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J. Mater. Chem. C 3(4), 720-724 (2015). https://doi.org/10.1039/c4tc02383h
  36. M. Kohri, Y. Tamai, A. Kawamura, K. Jido, M. Yamamoto, T. Taniguchi, D. Nagao, Ellipsoidal artifcial melanin particles as building blocks for biomimetic structural coloration. Langmuir 35(16), 5574-5580 (2019). https://doi.org/10.1021/acs.langmuir.9b00400
  37. M. Kolle, P.M. Salgard-Cunha, M.R.J. Scherer, F.M. Huang, P. Vukusic, S. Mahajan, et al., Mimicking the colourful wing scale structure of the Papilio blumei butterfy. Nat. Nanotechnol. 5(7), 511-515 (2010). https://doi.org/10.1038/Nnano.2010.101
  38. M.F. Land, The physics and biology of animal refectors. Prog. Biophys. Mol. Biol. 24, 75-106 (1972)
  39. F.H. Li, B.T. Tang, S.F. Zhang, Iridescent structural colors from self-assembled polymer opal of polythiourethane microspheres. Dyes Pigments 142, 371-378 (2017). https://doi.org/10.1016/j.dyepig.2017.03.059
  40. Q.G. Li, K.Q. Gao, Q.J. Meng, J.A. Clarke, M.D. Shawkey, L. D'Alba, J. Vinther, Reconstruction of microraptor and the evolution of iridescent plumage. Science 335(6073), 1215-1219 (2012). https://doi.org/10.1126/science.1213780
  41. Q.G. Li, K.Q. Gao, J. Vinther, M.D. Shawkey, J.A. Clarke, L. D'Alba, R.O. Prum, Plumage color patterns of an extinct dinosaur. Science 327(5971), 1369-1372 (2010). https://doi.org/10.1126/science.1186290
  42. Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. Adhyaru, C.Y. Cheng, J.D. Simon, Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem. Photobiol. 81(1), 135-144 (2005). https://doi.org/10.1562/2004-08-03-Ra-259.1
  43. I.J. Lovette, Conservation: Evolutionary values for all 10,000 birds. Curr. Biol. 24(10), R401-R402 (2014). https://doi.org/10.1016/j.cub.2014.04.005
  44. R. Maia, L. D'Alba, M.D. Shawkey, What makes a feather shine? A nanostructural basis for glossy black colours in feathers. Proceedings of the Royal Society B-Biological Sciences 278(1714), 1973-1980 (2011). https://doi.org/10.1098/rspb.2010.1637
  45. R. Maia, R.H.F. Macedo, M.D. Shawkey, Nanostructural self-assembly of iridescent feather barbules through depletion attraction of melanosomes during keratinization. J. R. Soc. Interface 9(69), 734-743 (2012). https://doi.org/10.1098/rsif.2011.0456
  46. R. Maia, D.R. Rubenstein, M.D. Shawkey, Key ornamental innovations facilitate diversifcation in an avian radiation. Proc. Natl. Acad. Sci. U. S. A. 110(26), 10687-10692 (2013). https://doi.org/10.1073/pnas.1220784110
  47. J.E. McGinness, Mobility gaps: A mechanism for band gaps in melanins. Science 177(4052), 896-897 (1972). https://doi.org/10.1126/science.177.4052.896
  48. J.E. McGinness, P. Corry, P. Proctor, Amorphous semiconductor switching in melanins. Science 183(4127), 853-855 (1974). https://doi.org/10.1126/science.183.4127.853
  49. P. Meredith, B.J. Powell, J. Riesz, S.P. Nighswander-Rempel, M.R. Pederson, E.G. Moore, Towards structure-property-function relationships for eumelanin. Soft Matter 2(1), 37-44 (2006). https://doi.org/10.1039/b511922g
  50. R. Micillo, L. Panzella, M. Iacomino, G. Prampolini, I. Cacelli, A. Ferretti, M. d'Ischia, Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Scientifc Reports, 7 (2017). https://doi.org/10.1038/srep41532
  51. A. Miserez, T. Schneberk, C.J. Sun, F.W. Zok, J.H. Waite, The transition from stif to compliant materials in squid beaks. Science 319(5871), 1816-1819 (2008). https://doi.org/10.1126/science.1154117
  52. H. Miyazaki, M. Hase, H.T. Miyazaki, Y. Kurokawa, N. Shinya, Photonic material for designing arbitrarily shaped waveguides in two dimensions. Physical Review B 67(23), 235109 (2003). https://doi.org/10.1103/PhysRevB.67.235109
  53. L. Naysmith, K. Waterston, T. Ha, N. Flanagan, Y. Bisset, A. Ray, J.L. Rees, Quantitative measures of the efect of the melanocortin 1 receptor on human pigmentary status. J. Investig. Dermatol. 122(2), 423-428 (2004). https://doi.org/10.1046/j.0022-202X.2004.22221.x
  54. R.A. Nicolaus, Melanins (Hermann, Paris, 1968)
  55. J.D. Nosanchuk, A. Casadevall, The contribution of melanin to microbial pathogenesis. Cell. Microbiol. 5(4), 203-223 (2003). https://doi.org/10.1046/j.1462-5814.2003.00268.x
  56. S. Pancharatnam, Generalized theory of interference and its applications. Proceedings of the Indian Academy of Sciences-Section A 44(6), 398-417 (1956). https://doi.org/10.1007/BF03046095
  57. A.R. Parker, 515 million years of structural colour. J. Opt. A Pure Appl. Opt. 2(6), R15 (2000)
  58. M. Piech, J.Y. Walz, Depletion interactions produced by nonadsorbing charged and uncharged spheroids. J. Colloid Interface Sci. 232(1), 86-101 (2000). https://doi.org/10.1006/jcis.2000.7194
  59. G. Prota, Progress in the chemistry of Melanins and related metabolites. Med. Res. Rev. 8(4), 525-556 (1988). https://doi.org/10.1002/med.2610080405
  60. G. Prota, Melanins and melanogenesis, 1-290 (Academic Press, New York, 1992)
  61. R.O. Prum, T. Quinn, R.H. Torres, Anatomically diverse butterfy scales all produce structural colours by coherent scattering. J. Exp. Biol. 209(4), 748-765 (2006). https://doi.org/10.1242/jeb.02051
  62. R.O. Prum, R.H. Torres, A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures. Integr. Comp. Biol. 43(4), 591-602 (2003). https://doi.org/10.1093/icb/43.4.591
  63. R. Riedler, C. Pesme, J. Druzik, M. Gleeson, E. Pearlstein, A review of color-producing mechanisms in feathers and their infuence on preventive conservation strategies. J. Am. Inst. Conserv. 53(1), 44-65 (2014). https://doi.org/10.1179/1945233013y.0000000020
  64. D. Sakurai, M. Goda, Y. Kohmura, T. Horie, H. Iwamoto, H. Ohtsuki, I. Tsuda, The role of pigment cells in the brain of ascidian larva. J. Comp. Neurol. 475(1), 70-82 (2004). https://doi.org/10.1002/cne.20142
  65. M.D. Shawkey, L. D'Alba, M. Xiao, M. Schutte, R. Buchholz, Ontogeny of an iridescent nanostructure composed of hollow Melanosomes. J. Morphol. 276(4), 378-384 (2015). https://doi.org/10.1002/jmor.20347
  66. M.D. Shawkey, G.E. Hill, Signifcance of a basal melanin layer to production of non-iridescent structural plumage color: Evidence from an amelanotic Steller's jay (Cyanocitta stelleri). J. Exp. Biol. 209(7), 1245-1250 (2006). https://doi.org/10.1242/jeb.02115
  67. J.D. Simon, L. Hong, D.N. Peles, Insights into Melanosomes and melanin from some interesting spatial and temporal properties. J. Phys. Chem. B 112(42), 13201-13217 (2008). https://doi.org/10.1021/jp804248h
  68. J.D. Simon, D. Peles, K. Wakamatsu, S. Ito, Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function. Pigment Cell & Melanoma Research 22(5), 563-579 (2009). https://doi.org/10.1111/j.1755-148X.2009.00610.x
  69. J.D. Simon, D.N. Peles, The red and the black. Acc. Chem. Res. 43(11), 1452-1460 (2010). https://doi.org/10.1021/ar100079y
  70. V. Singh, A. Dong, J.S. Gero, Developing a computational model to understand the contributions of social learning modes to task coordination in teams. Ai Edam-Artifcial Intelligence for Engineering Design Analysis and Manufacturing 27(1), 3-17 (2013). https://doi.org/10.1017/S0890060412000340
  71. S.E. Skipetrov, I.M. Sokolov, Absence of Anderson localization of light in a random ensemble of point scatterers. Phys. Rev. Lett. 112(2), 023905 (2014). https://doi.org/10.1103/PhysRevLett.112.023905
  72. D.G. Stavenga, H.L. Leertouwer, T. Hariyama, H.A. De Raedt, B.D. Wilts, Sexual Dichromatism of the damselfy Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins. PLoS One 7(11) (2012). https://doi.org/10.1371/journal.pone.0049743
  73. D.G. Stavenga, H.L. Leertouwer, N.J. Marshall, D. Osorio, Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proceedings of the Royal Society B-Biological Sciences 278(1715), 2098-2104 (2011). https://doi.org/10.1098/rspb.2010.2293
  74. J.Y. Sun, B. Bhushan, J. Tong, Structural coloration in nature. RSC Adv. 3(35), 14862-14889 (2013). https://doi.org/10.1039/c3ra41096j
  75. Y. Takeoka, Angle-independent structural coloured amorphous arrays. J. Mater. Chem. 22(44), 23299-23309 (2012). https://doi.org/10.1039/c2jm33643j
  76. Y. Takeoka, Environment and human friendly colored materials prepared using black and white components. Chem. Commun. 54(39), 4905-4914 (2018). https://doi.org/10.1039/c8cc01894d
  77. Y. Takeoka, S. Yoshioka, A. Takano, S. Arai, K. Nueangnoraj, H. Nishihara, T. Seki, Production of colored pigments with amorphous arrays of black and white colloidal particles. Angewandte Chemie-International Edition 52(28), 7261-7265 (2013). https://doi.org/10.1002/anie.201301321
  78. C. Tedore, D.E. Nilsson, Avian UV vision enhances leaf surface contrasts in forest environments. Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-018-08142-5
  79. M.L. Tran, B.J. Powell, P. Meredith, Chemical and structural disorder in eumelanins: A possible explanation for broadband absorbance. Biophys. J. 90(3), 743-752 (2006). https://doi.org/10.1529/biophysj.105.069096
  80. Y. Wang, L. Shang, G. Chen, L. Sun, X. Zhang, Y. Zhao, Bioinspired structural color patch with anisotropic surface adhesion. Sci. Adv. 6(4) (2020). https://doi.org/10.1126/sciadv.aax8258
  81. A.A.R. Watt, J.P. Bothma, P. Meredith, The supramolecular structure of melanin. Soft Matter 5(19), 3754-3760 (2009). https://doi.org/10.1039/b902507c
  82. M. Xiao, W. Chen, W.Y. Li, J.Z. Zhao, Y.L. Hong, Y. Nishiyama, A. Dhinojwala, Elucidation of the hierarchical structure of natural eumelanins. J. R. Soc. Interface 15(140) (2018). https://doi.org/10.1098/rsif.2018.0045
  83. M. Xiao, Z.Y. Hu, Z. Wang, Y.W. Li, A.D. Tormo, N. Le Thomas, A. Dhinojwala, Bioinspired bright noniridescent photonic melanin supraballs. Sci. Adv. 3(9) (2017). https://doi.org/10.1126/sciadv.1701151
  84. M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N.C. Gianneschi, A. Dhinojwala, M.D. Shawkey, Stimuli-responsive structurally colored flms from bioinspired synthetic melanin nanoparticles. Chem. Mater. 28(15), 5516-5521 (2016). https://doi.org/10.1021/acs.chemmater.6b02127
  85. M. Xiao, Y.W. Li, M.C. Allen, D.D. Deheyn, X.J. Yue, J.Z. Zhao, A. Dhinojwala, Bioinspired structural colors produced via self-assembly of synthetic melanin nanoparticles. ACS Nano 9(5), 5454-5460 (2015). https://doi.org/10.1021/acsnano.5b01298
  86. M. Xiao, M.D. Shawkey, A. Dhinojwala, Bioinspired melanin-based optically active materials. Advanced Optical Materials 8(19) (2020). https://doi.org/10.1002/adom.202000932
  87. S. Yoshioka, E. Nakamura, S. Kinoshita, Origin of two-color iridescence in rock dove's feather. J. Phys. Soc. Jpn. 76(1) (2007). https://doi.org/10.1143/Jpsj.76.013801
  88. S. Yoshioka, Y. Takeoka, Production of Colourful pigments consisting of amorphous arrays of silica particles. Chemphyschem 15(11), 2209-2215 (2014). https://doi.org/10.1002/cphc.201402095
  89. C. Zhang, B.H. Wu, Y. Du, M.Q. Ma, Z.K. Xu, Mussel-inspired polydopamine coatings for large-scale and angle-independent structural colors. J. Mater. Chem. C 5(16), 3898-3902 (2017). https://doi.org/10.1039/c7tc00530j
  90. J. Zi, X.D. Yu, Y.Z. Li, X.H. Hu, C. Xu, X.J. Wang, R.T. Fu, Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. U. S. A. 100(22), 12576-12578 (2003). https://doi.org/10.1073/pnas.2133313100
  91. L. Zulian, E. Emilitri, G. Scavia, C. Botta, M. Colombo, S. Destri, Structural iridescent tuned colors from self-assembled polymer opal surfaces. ACS Appl. Mater. Interfaces 4(11), 6071-6079 (2012). https://doi.org/10.1021/am301709b